Retroviruses contain two copies of the plus stranded viral RNA genome. As a means of determining whether both of these RNA's are used in the reverse transcription reaction, cells were infected with heterozygous virus particles that varied in nucleotide sequence at two separate locations at the RNA termini. The DNA proviruses formed from a single cycle of reverse transcription were then examined. Of the 12 proviruses that were characterized, all exhibited long terminal repeats (LTR's) that would be expected to arise only if both RNA templates were used for the generation of minus strand DNA. In contrast, only a single minus strand DNA appeared to be used as template for the plus strand DNA in the generation of fully double-stranded viral DNA. These results indicate that the first strand transfer step in reverse transcription is an intermolecular event while that of the second transfer is intramolecular. Thus, retroviruses contain two functionally active RNA's, and both may be required for the generation of a single linear DNA molecule. Formation of heterozygotes during retrovirus infection would be expected to result in the efficient generation of LTR recombinants.
Neural tissue engineering focuses on development of biomaterials that could support regeneration of neurons after trauma as well as injury caused by degenerative diseases. In this work we describe novel soft alginate hydrogels, which provide an adhesive matrix for rat and human neurons and facilitate neurite outgrowth. Only soft hydrogels, prepared with sub-stoichiometric concentrations of Ca²⁺, Ba²⁺, and Sr²⁺ cations by cross-linking with no >10% of all potentially available gelation sites in alginate, facilitated rapid and abundant neurite outgrowth in primary neuronal monolayer cultures, neural spheroids, and neurons derived from rat and human neural stem cells. To support neurite growth, hydrogels did not require modification by any extracellular matrix components and were prepared from high as well as low viscous alginates of different origin. In addition, neurons cultured on soft hydrogels were resistant to oxidative stress injury induced by hydrogen peroxide. These findings, which apply both to rat and human neurons, go beyond the well-described role of alginates as inert materials for cell encapsulation. Such soft alginate hydrogels may be useful for the preparation of pharmaceutical compositions for prophylaxis and treatment of neurodegenerative disorders, for promoting neuronal regeneration in the peripheral and central nervous system and for neural tissue engineering applications.
Immediate early viral protein IE1 is a potent transcriptional activator encoded by baculoviruses. Although the requirement of IE1 for multiplication of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) is well established, the functional roles of IE1 during infection are unclear. Here, we used RNA interference to ablate IE1, plus its splice variant IE0, and thereby define in vivo activities of these early proteins, including gene-specific regulation and induction of host cell apoptosis. Confirming an essential replicative role, simultaneous ablation of IE1 and IE0 by gene-specific double-stranded RNAs inhibited AcMNPV late gene expression, reduced yields of budded virus by more than 1,000-fold, and blocked production of occluded virus particles. Depletion of IE1 and IE0 had no effect on early expression of the envelope fusion protein gene gp64 but abolished early expression of the caspase inhibitor gene p35, which is required for prevention of virus-induced apoptosis. Thus, IE1 is a positive, gene-specific transactivator. Whereas an AcMNPV p35 deletion mutant caused widespread apoptosis in permissive Spodoptera frugiperda cells, ablation of IE1 and IE0 prevented this apoptosis. Silencing of ie-1 also prevented AcMNPV-induced apoptosis in nonpermissive Drosophila melanogaster cells. Thus, de novo synthesis of IE1 is required for virus-induced apoptosis. We concluded that IE1 causes apoptosis directly or contributes indirectly by promoting virus replication events that subsequently trigger cell death. This study reveals that IE1 is a gene-selective transcriptional activator which is required not only for expedition of virus multiplication but also for blocking of its own proapoptotic activity by upregulation of baculovirus apoptotic suppressors.
The process of retroviral RNA encapsidation involves interaction between transacting viral proteins and cis-acting RNA elements. The encapsidation signal on human immunodeficiency virus type 1 (HIV-1) RNA is a multipartite structure composed of functional stem-loop structures. The nucleocapsid (NC) domain of the Gag polyprotein precursor contains two copies of a Cys-His box motif that have been demonstrated to be important in RNA encapsidation. To further characterize the role of the Cys-His boxes of the HIV-1 NC protein in RNA encapsidation, the relative efficiency of RNA encapsidation for virus particles that contained mutations within the Cys-His boxes was measured. Mutations that disrupted the first Cys-His box of the NC protein resulted in virus particles that encapsidated genomic RNA less efficiently and subgenomic RNA more efficiently than did wild-type virus. Mutations within the second Cys-His box did not significantly affect RNA encapsidation. In addition, a full complement of wild-type NC protein in virus particles is not required for efficient RNA encapsidation or virus replication. Finally, both Cys-His boxes of the NC protein play additional roles in virus replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.