Trivalent lanthanide-like metal ions coordinate nine water oxygen atoms, which form a tricapped trigonal prism in a large number of crystalline hydrates. Water deficiency, randomly distributed over the capping positions, was found for the smallest metal ions in the isomorphous nonahydrated trifluoromethanesulfonates, [M(H2O)n](CF3SO3)3, in which M = Sc(III), Lu(III), Yb(III), Tm(III) or Er(III). The hydration number n increases (n = 8.0(1), 8.4(1), 8.7(1), 8.8(1) and 8.96(5), respectively) with increasing ionic size. Deuterium (2H) solid-state NMR spectroscopy revealed fast positional exchange between the coordinated capping and prism water molecules; this exchange started at temperatures higher than about 280 K for lutetium(III) and below 268 K for scandium(III). Similar positional exchange for the fully nonahydrated yttrium(III) and lanthanum(III) compounds started at higher temperatures, over about 330 and 360 K, respectively. An exchange mechanism is proposed that can exchange equatorial and capping water molecules within the restrictions of the crystal lattice, even for fully hydrated lanthanoid(III) ions. Phase transitions occurred for all the water-deficient compounds at approximately 185 K. The hydrated scandium(III) trifluoromethanesulfonate transforms reversibly (DeltaH degrees = -0.80(1) kJ mol(-1) on cooling) to a trigonal unit cell that is almost nine times larger, with the scandium ion surrounded by seven fully occupied and two partly occupied oxygen atom positions in a distorted capped trigonal prism. The hydrogen bonding to the trifluoromethanesulfonate anions stabilises the trigonal prism of water ligands, even for the crowded hydration sphere of the smallest metal ions in the series. Implications for the Lewis acid catalytic activity of the hydrated scandium(III) and lanthanoid(III) trifluoromethanesulfonates for organic syntheses performed in aqueous media are discussed.
Application of rapid sample rotation and radiofrequency irradiation in magic angle spinning (MAS) NMR of lipid bilayers can significantly increase the sample temperature. In this work, we studied the extent of heating during the acquisition of 1H-decoupled 13C MAS spectra of hydrated dimyristoylphosphatidylcholine (DMPC) in the L(alpha) phase. First, we describe a simple procedure for determining the increase in temperature by observing the shift of the 1H water signal. The method is then used to identify and assess the various factors that contribute to the sample heating. The important factors discussed in this paper include: (i) the spinning speed, (ii) the variable-temperature gas pressure, (iii) the rotor geometry, (iv) the power, duration and frequency of the radiofrequency irradiation and (v) the hydration level. A comparison of different heteronuclear decoupling schemes in terms of their ability to produce highly resolved 13C spectra of DMPC is also reported.
Recently (Dvinskikh et al., J. Magn. Reson., 2003, 164, 165 and Dvinskikh et al., J. Magn. Reson., 2004, 168, 194), some of us introduced two efficient solid-state NMR techniques for the determination of heteronuclear dipolar couplings under magic-angle spinning (MAS). These two-dimensional (2D) recoupling methods have been applied previously to simple amino acids, and to columnar systems with high positional and orientational order. In this work, we show that the 2D MAS sequences produce unparalleled 1H-13C dipolar resolution in unoriented lipid membranes. The recoupling experiments were applied to hydrated dimyristoylphosphatidylcholine (DMPC) in the liquid-crystalline Lalpha phase, and the results agreed well with previous NMR investigations using specifically deuterated phospholipids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.