A Holistic Approach to GTCC Operational Efficiency Improvement StudiesBecause o f the increasing share o f renewables in the energy market, part load operation o f gas turbine combined cycle (GTCC) power plants has become a major issue. In combi nation with the variable ambient conditions and fuel quality, load variations cause these plants to be operated across a wide range o f conditions and settings. However, efficiency improvement and optimization studies are often focused on single operating points. The current study assesses efficiency improvement possibilities fo r the KA26 GTCC plant, as recently built in Lelystad, The Netherlands, taking into account that the plant is operated under frequently varying conditions and load settings. In this context, free operational parameters play an important role: these are the process parameters, which can be adjusted by the operator without compromising safety and other operational objectives. The study applies a steady state thermodynamic model with second-law analysis for exploring the entire operational space. A method is presented fo r revealing correlations between the exergy losses in major system components, indicating component interac tions. This is achieved with a set o f numerical simulations, in which operational condi tions and settings are randomly varied, recording plant efficiency and exergy losses in major components. The resulting data is used to identify distinct operational regimes for the GTCC. Finally, the free operational parameters are used as decision variables in a genetic algorithm, optimizing plant efficiency in the operational regimes identified earlier. The results show that the optimal settings fo r decision variables depend on the regime o f operation.
Because of the increasing share of renewables in the energy market, part load operation of gas turbine combined cycle (GTCC) power plants has become a major issue. In combination with the variable ambient conditions and fuel quality, load variations cause these plants to be operated across a wide range of conditions and settings. However, efficiency improvement and optimization studies are often focused on single operating points. The current study assesses efficiency improvement possibilities for the KA26 GTCC plant, as recently built in Lelystad, The Netherlands, taking into account that the plant is operated under frequently varying conditions and load settings. In this context, free operational parameters play an important role: these are the process parameters, which can be adjusted by the operator without compromising safety and other operational objectives. The study applies a steady state thermodynamic model with second-law analysis for exploring the entire operational space. A method is presented for revealing correlations between the exergy losses in major system components, indicating component interactions. This is achieved with a set of numerical simulations, in which operational conditions and settings are randomly varied, recording plant efficiency and exergy losses in major components. The resulting data is used to identify distinct operational regimes for the GTCC. Finally, the free operational parameters are used as decision variables in a genetic algorithm, optimizing plant efficiency in the operational regimes identified earlier. The results show that the optimal settings for decision variables depend on the regime of operation.
On line compressor washing is an established practice amid gas turbine operators. Among these operators is the Netherlands Division of Electrabel who is operating at Eemshaven 5 x GE Frame 9-FA units since 1995. The plant operator used to perform routinely a daily on line wash and a single off line wash every year at shut down of the units for the annual inspection or maintenance outage. The on line water wash (OLWW) systems installed on these 5 engines are of the Turbotect Mk1 nozzle design and were originally procured and supplied by the OEM. To our knowledge, all other manufactured gas turbines in the 7/9-FA fleet are equipped with the OEMs’ own engineered OLWW nozzle systems. The OLWW regime of washing was reduced in June 2001 upon receipt of a recommendation by the OEM to inspect the first stages of the compressor for erosion marks. This recommendation was issued because some events have lead to investigation on erosion issues which materialized in the R0 (first stage rotor) compressor blades in some engines of the 7/9-FA fleet operating with the OEM OLWW system and resulting from frequent compressor wash routine, and/or from water ingestion used in power augmentation. Likewise, during the same time, some gas turbines at Eemscentrale had undergone their first major overhaul which allowed the compressor first row blading to be examined for signs of erosion. It was found that only minor erosion at the R0 blade leading edge had occurred over more than seven years of operation, during which period a daily on line wash had been performed. However, because of the erosion concerns among the 7/9-FA fleet and the OEM-recommended frequent inspections and measures to mitigate the rate of erosion due to droplet impingement, Electrabel investigated independently for a way of further reducing the erosion rate while maintaining on line washing over the lifetime of the gas turbine and improving the cleaning efficiency. To this effect, the OLWW system on unit EC-6 was upgraded in June 2004 with a new on line nozzle system specifically developed for use in large gas turbines. This paper presents the investigation results after some 24 months of operation and routine on line compressor washing. The Turbotect Mk3 OLWW nozzle system demonstrated and confirmed that it is contributing to mitigate the erosion risk on the R0 compressor blade leading edge, and in turn to decrease the number of blending operations over the life time of the R0 compressor blades. This nozzle designed for on line compressor cleaning of large gas turbines achieved a substantially improved cleaning effectiveness, respectively a lower rate in power degradation, by approx. 30 to 40% as compared to the current in use Mk1 OLWW nozzle system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.