Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.
Terms of use:
Documents in
ABSTRACTUsing an Euler discretisation to simulate a mean-reverting CEV process gives rise to the problem that while the process itself is guaranteed to be nonnegative, the discretisation is not. Although an exact and efficient simulation algorithm exists for this process, at present this is not the case for the CEV-SV stochastic volatility model, with the Heston model as a special case, where the variance is modelled as a mean-reverting CEV process. Consequently, when using an Euler discretisation, one must carefully think about how to fix negative variances. Our contribution is threefold. Firstly, we unify all Euler fixes into a single general framework. Secondly, we introduce the new full truncation scheme, tailored to minimise the positive bias found when pricing European options. Thirdly and finally, we numerically compare all Euler fixes to recent quasi-second order schemes of Kahl and Jäckel and Ninomiya and Victoir, as well as to the exact scheme of Broadie and Kaya. The choice of fix is found to be extremely important. The full truncation scheme outperforms all considered biased schemes in terms of bias and root-mean-squared error.
a b s t r a c tWe propose new scoring rules based on conditional and censored likelihood for assessing the predictive accuracy of competing density forecasts over a specific region of interest, such as the left tail in financial risk management. These scoring rules can be interpreted in terms of Kullback-Leibler divergence between weighted versions of the density forecast and the true density. Existing scoring rules based on weighted likelihood favor density forecasts with more probability mass in the given region, rendering predictive accuracy tests biased toward such densities. Using our novel likelihood-based scoring rules avoids this problem.
In this paper we examine the forecast accuracy of linear autoregressive, smooth transition autoregressive (STAR), and neural network (NN) time series models for 47 monthly macroeconomic variables of the G7 economies. Unlike previous studies that typically consider multiple but fixed model specifications, we use a single but dynamic specification for each model class. The point forecast results indicate that the STAR model generally outperforms linear autoregressive models. It also improves upon several fixed STAR models, demonstrating that careful specification of nonlinear time series models is of crucial importance. The results for neural network models are mixed in the sense that at long forecast horizons, an NN model obtained using Bayesian regularization produces more accurate forecasts than a corresponding model specified using the specific-to-general approach. Reasons for this outcome are discussed.
Realized variance, being the summation of squared intra-day returns, has quickly gained popularity as a measure of daily volatility. Following Parkinson (1980) we replace each squared intra-day return by the high-low range for that period to create a novel and more efficient estimator called the realized range. In addition we suggest a bias-correction procedure to account for the effects of microstructure frictions based upon scaling the realized range with the average level of the daily range. Simulation experiments demonstrate that for plausible levels of non-trading and bid-ask bounce the realized range has a lower mean squared error than the realized variance, including variants thereof that are robust to microstructure noise. Empirical analysis of the S&P500 index-futures and the S&P100 constituents confirm the potential of the realized range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.