OBJECTIVE-We sought to determine whether adipose tissue is inflamed in individuals with increased liver fat (LFAT) independently of obesity. RESEARCH DESIGN AND METHODS-A total of 20 nondiabetic, healthy, obese women were divided into normal and high LFAT groups based on their median LFAT level (2.3 Ϯ 0.3 vs. 14.4 Ϯ 2.9%). Surgical subcutaneous adipose tissue biopsies were studied using quantitative PCR, immunohistochemistry, and a lipidomics approach to search for putative mediators of insulin resistance and inflammation. The groups were matched for age and BMI. The high LFAT group had increased insulin (P ϭ 0.0025) and lower HDL cholesterol (P ϭ 0.02) concentrations.RESULTS-Expression levels of the macrophage marker CD68, the chemokines monocyte chemoattractant protein-1 and macrophage inflammatory protein-1␣, and plasminogen activator inhibitor-1 were significantly increased, and those of peroxisome proliferator-activated receptor-␥ and adiponectin decreased in the high LFAT group. CD68 expression correlated with the number of macrophages and crown-like structures (multiple macrophages fused around dead adipocytes). Concentrations of 154 lipid species in adipose tissue revealed several differences between the groups, with the most striking being increased concentrations of triacylglycerols, particularly long chain, and ceramides, specifically Cer(d18:1/24:1) (P ϭ 0.01), in the high LFAT group. Expression of sphingomyelinases SMPD1 and SMPD3 were also significantly increased in the high compared with normal LFAT group.CONCLUSIONS-Adipose tissue is infiltrated with macrophages, and its content of long-chain triacylglycerols and ceramides is increased in subjects with increased LFAT compared with equally obese subjects with normal LFAT content. Ceramides or their metabolites could contribute to adverse effects of long-chain fatty acids on insulin resistance and inflammation.
Background— Atherosclerosis is a multifactorial disease in which inflammatory processes play an important role. Inflammation underlies lesion evolution at all stages, from establishment to plaque rupture and thrombosis. Costimulatory molecules of the tumor necrosis factor superfamily such as CD40/CD40L and OX40/OX40L have been implicated in atherosclerosis. Methods and Results— This study shows that the tumor necrosis factor superfamily members CD137 and CD137 ligand (CD137L), which play a major role in several autoimmune diseases, may constitute a pathogenic pair in atherogenesis. We detected CD137 protein in human atherosclerotic lesions not only on T cells but also on endothelial cells and showed that CD137 in cultured endothelial cells and smooth muscle cells was induced by proinflammatory cytokines implicated in atherosclerosis. Activation of CD137 by CD137L induced adhesion molecule expression on endothelial cells and reduced smooth muscle cell proliferation. In addition, treatment of atherosclerosis-prone apolipoprotein E–deficient mice with a CD137 agonist caused increased inflammation. T-cell infiltration, mainly of CD8 + cells, and expression of the murine major histocompatibility complex class II molecule I-A b increased significantly in atherosclerotic lesions, as did the aortic expression of proinflammatory cytokines. Conclusions— Taken together, these observations suggest that CD137-CD137L interactions in the vasculature may contribute to the progression of atherosclerosis via augmented leukocyte recruitment, increased inflammation, and development of a more disease-prone phenotype.
The aims of this study were 1) to characterize changes in matrix metalloproteinase (MMP), endostatin, and vascular endothelial growth factor (VEGF)-A expression in skeletal muscle in response to a single bout of exercise in humans; and 2) to determine if any exchange of endostatin and VEGF-A between circulation and the exercising leg is associated with a change in the tissue expression or plasma concentration of these factors. Ten healthy males performed 65 min of cycle exercise, and muscle biopsies were obtained from the vastus lateralis muscle at rest and immediately and 120 min after exercise. In the muscle biopsies, measurements of mRNA expression levels of MMP-2, MMP-9, MMP-14, and tissue inhibitor of metalloproteinase; VEGF and endostatin protein levels; and MMP activities were performed. Femoral arterial and venous concentrations of VEGF-A and endostatin were determined before, during, and 120 min after exercise. A single bout of exercise increased MMP-9 mRNA and activated MMP-9 protein in skeletal muscle. No measurable increase of endostatin was observed in the skeletal muscle or in plasma following exercise. A concurrent increase in skeletal muscle VEGF-A mRNA and protein levels was induced by exercise, with no signs of peripheral uptake from the circulation. However, a decrease in plasma VEGF-A concentration occurred following exercise. Thus 1) a single bout of exercise activated the MMP system without any resulting change in tissue endostatin protein levels, and 2) the increased VEGF-A protein levels are due to changes in the skeletal muscle tissue itself. Other mechanisms are responsible for the observed exercise-induced decrease in VEGF-A in plasma.
Objective-Atherosclerosis is an inflammatory disease. Several chemokines are important for monocyte/macrophage and T-cell recruitment to the lesion. CXCL16 is a recently discovered chemokine that is expressed in soluble and transmembrane forms, ligates CXCR6 chemokine receptor, and guides migration of activated Th1 and Tc1 cells. It is identical to scavenger receptor SR-PSOX, which mediates uptake of oxidized low-density lipoprotein. We investigated whether CXCL16 expression is controlled by interferon-␥ (IFN-␥)-cytokine abundant in atherosclerotic lesions. Methods and Results-CXCL16 and CXCR6 expression was identified by polymerase chain reaction and histochemistry in atherosclerotic lesions from humans and apolipoprotein-E-deficient mice. In vitro IFN-␥ induced CXCL16 in human monocytic THP-1 cells and primary human monocytes, which led to increased uptake of oxidized low-density lipoprotein in THP-1 cells, which could be blocked by peptide antibodies against CXCL16. In vivo IFN-␥ induced CXCL16 expression in murine atherosclerotic lesions. Conclusions-We
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.