The analysis of waveforms related to transient events is an important task in power system maintenance. Currently, electric power systems are monitored by several event recorders called phasor measurement units (PMUs) which generate a large amount of data. The number of records is so high that it makes human analysis infeasible. An alternative way of solving this problem is to group events in similar classes so that it is no longer necessary to analyze all the events, but only the most representative of each class. Several automatic clustering algorithms have been proposed in the literature. Most of these algorithms use validation indexes to rank the partitioning quality and, consequently, find the optimal number of clusters. However, this issue remains open, as each index has its own performance highly dependent on the data spatial distribution. The main contribution of this paper is the development of a methodology that optimizes the results of any clustering algorithm, regardless of data spatial distribution. The proposal is to evaluate the internal correlation of each cluster to proceed or not in a new partitioning round. In summary, the traditional validation indexes will continue to be used in the cluster’s partition process, but it is the internal correlation measure of each one that will define the stopping splitting criteria. This approach was tested in a real waveforms database using the K-means algorithm with the Silhouette and also the Davies–Bouldin validation indexes. The results were compared with a specific methodology for that database and were shown to be totally consistent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.