Credit card defaults pause a business-critical threat in banking systems thus prompt detection of defaulters is a crucial and challenging research problem. Machine learning algorithms must deal with a heavily skewed dataset since the ratio of defaulters to non-defaulters is very small. The purpose of this research is to apply different ensemble methods and compare their performance in detecting the probability of defaults customer’s credit card default payments in Taiwan from the UCI Machine learning repository. This is done on both the original skewed dataset and then on balanced dataset several studies have showed the superiority of neural networks as compared to traditional machine learning algorithms, the results of our study show that ensemble methods consistently outperform Neural Networks and other machine learning algorithms in terms of F1 score and area under receiver operating characteristic curve regardless of balancing the dataset or ignoring the imbalance
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.