In this paper, we give some approximation properties of Sz?sz type operators
involving Charlier polynomials in the polynomial weighted space and we give
the quantitative Voronovskaya-type asymptotic formula.
This study is a natural continuation of modified Picard operators, defined by Agratini et al, preserving an exponential function. Herein, we first show that these operators are approximation processes in the setting of large classes of weighted spaces. Then, we obtain weighted uniform convergence of the operators via exponential weighted modulus of smoothness. Finally, we give, by using the weighted modulus of continuity, the result regarding global smoothness preservation properties for the generalized Picard operators, which based in Agratini et al.
The aim of this paper is to prove some convergence theorems for a general Krasnoselskij type fixed point iterative method defined by means of the concept of admissible perturbation of a demicontractive operator in Hilbert spaces.
In this paper, we consider a complex q-Baskakov-Stancu operator and study some approximation properties. We give a quantitative estimate of the convergence, Voronovskaja-type result and exact order of approximation in compact disks. MSC: 30E10; 41A25; 41A28
This paper is mainly focused on the integral extension of Bernstein-Chlodovsky operators which preserve exponential function. Inspire of the Bernstein-Chlodovsky operators which preserve exponential function, we define the integral extension of these operators by using a different technique. We give weighted approximation properties including a weighted uniform convergence and a weighted quantitative theorem in terms of exponential weighted modulus of continuity. Furthermore, we give the Voronovskaya type theorem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.