Aim There is accumulating evidence that neutropenic patients require higher dosages of vancomycin. To prevent sub-therapeutic drug exposure, it is of utmost importance to obtain adequate exposure from the first dose onwards. We aimed to quantify the effect of neutropenia on the pharmacokinetics of vancomycin. Methods Data were extracted from a matched patient cohort of patients known with (1) hematological disease, (2) solid malignancy, and (3) patients not known with cancer. Pharmacokinetic analysis was performed using non-linear mixed effects modeling with neutropenia investigated as a binary covariate on clearance and volume of distribution of vancomycin. Results A total of 116 patients were included (39 hematologic patients, 39 solid tumor patients, and 38 patients not known with cancer). In total, 742 paired time-concentration observations were available for the pharmacokinetic analysis. Presence of neutropenia showed to significantly (p = 0.00157) increase the clearance of vancomycin by 27.7% (95% CI 10.2-46.2%), whereas it did not impact the volume of distribution (p = 0.704). Conclusions This study shows that vancomycin clearance is increased in patients with neutropenia by 27.7%. Therefore, the vancomycin maintenance dose should be pragmatically increased by 25% in neutropenic patients at the start of treatment. Since the volume of distribution appeared unaffected, no adjustment in loading dose is required. These dose adjustments do not rule out the necessity of further dose individualization by means of therapeutic drug monitoring.
Triazoles represent an important class of antifungal drugs in the prophylaxis and treatment of invasive fungal disease in pediatric patients. Understanding the pharmacokinetics of triazoles in children is crucial to providing optimal care for this vulnerable population. While the pharmacokinetics is extensively studied in adult populations, knowledge on pharmacokinetics of triazoles in children is limited. New data are still emerging despite drugs already going off patent. This review aims to provide readers with the most current knowledge on the pharmacokinetics of the triazoles: fluconazole, itraconazole, voriconazole, posaconazole, and isavuconazole. In addition, factors that have to be taken into account to select the optimal dose are summarized and knowledge gaps are identified that require further research. We hope it will provide clinicians guidance to optimally deploy these drugs in the setting of a life-threatening disease in pediatric patients.
The investigation of clinical pathology parameters (haematology, clinical chemistry and coagulation) is an important part of the preclinical evaluation of drug safety. However, the blood sampling method employed should avoid or minimize stress and injury in laboratory animals. In the present study, we compared the clinical pathology results from blood samples collected terminally from the vena cava (VC) immediately before necropsy with samples taken from the sublingual vein (VS) also prior to necropsy in order to determine whether the sampling method has an influence on clinical pathology parameters. Forty-six 12-week-old male Sprague-Dawley rats were assigned to two groups (VC or VS; n ¼ 23 each). All rats were anaesthetized with isoflurane prior to sampling. In the VC group, blood was withdrawn from the inferior VC. For VS sampling, the tongue was gently pulled out and the VS was punctured. The haematology, coagulation and clinical chemistry parameters were compared. Equivalence was established for 13 parameters, such as mean corpuscular volume, white blood cells and calcium. No equivalence was found for the remaining 26 parameters, although they were considered to be similar when compared with the historical data and normal ranges. The most conspicuous finding was that activated prothrombin time was 30.3% less in blood taken from the VC (16.6 + 0.89 s) than that in the VS samples (23.8 + 1.58 s). Summing up, blood sampling from the inferior VC prior to necropsy appears to be a suitable and reliable method for terminal blood sampling that reduces stress and injury to laboratory rats in preclinical drug safety studies.
Objectives To determine the pharmacokinetics of twice-a-week micafungin prophylaxis in paediatric leukaemic patients to provide the rationale for this approach. Methods Twice-a-week micafungin at a dose of 9 mg/kg (maximum 300 mg) was given during the leukaemic induction treatment with at least one pharmacokinetic assessment. Non-linear mixed-effects modelling was used for analysis. For model building, our paediatric data were strengthened with existing adult data. Monte Carlo simulations were performed with twice-a-week dosing regimens of 5, 7 and 9 mg/kg and flat dosing per weight band. Simulated paediatric exposures were compared with the exposure in adults after a once-daily 100 mg regimen. Results Sixty-one paediatric patients were included with a median age and weight of 4.0 years (range 1.0–17) and 19.5 kg (range 8.60–182), respectively. A two-compartment model best fitted the data. CL and central Vd were lower (P < 0.01) in paediatric patients compared with adults. Predicted exposures (AUC0–168 h) for the 5, 7 and 9 mg/kg and flat dosing per weight band regimens exceeded the adult reference exposure. Conclusions All twice-a-week regimens appeared to result in adequate exposure for Candida therapy, with simulated exposures well above the adult reference exposure. These findings provide the rationale for the pharmacokinetic equivalence of twice-a-week and once-daily micafungin regimens. The greater micafungin exposures seem to be caused by a slower-than-anticipated CL in our paediatric leukaemic patients. The generalizability of our results for Aspergillus prophylaxis cannot be provided without assumptions on target concentrations and within-class identical efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.