PPAR␥ is a member of the PPAR subfamily of nuclear receptors. In this work, the structure of the human PPAR␥ cDNA and gene was determined, and its promoters and tissue-specific expression were functionally characterized. Similar to the mouse, two PPAR isoforms, PPAR␥1 and PPAR␥2, were detected in man. The relative expression of human PPAR␥ was studied by a newly developed and sensitive reverse transcriptasecompetitive polymerase chain reaction method, which allowed us to distinguish between PPAR␥1 and ␥2 mRNA. In all tissues analyzed, PPAR␥2 was much less abundant than PPAR␥1. Adipose tissue and large intestine have the highest levels of PPAR␥ mRNA; kidney, liver, and small intestine have intermediate levels; whereas PPAR␥ is barely detectable in muscle. This high level expression of PPAR␥ in colon warrants further study in view of the well established role of fatty acid and arachidonic acid derivatives in colonic disease. Similarly as mouse PPAR␥s, the human PPAR␥s are activated by thiazolidinediones and prostaglandin J and bind with high affinity to a PPRE. The human PPAR␥ gene has nine exons and extends over more than 100 kilobases of genomic DNA. Alternate transcription start sites and alternate splicing generate the PPAR␥1 and PPAR␥2 mRNAs, which differ at their 5 -ends. PPAR␥1 is encoded by eight exons, and PPAR␥2 is encoded by seven exons. The 5 -untranslated sequence of PPAR␥1 is comprised of exons A1 and A2, whereas that of PPAR␥2 plus the additional PPAR␥2-specific N-terminal amino acids are encoded by exon B, located between exons A2 and A1. The remaining six exons, termed 1 to 6, are common to the PPAR␥1 and ␥2. Knowledge of the gene structure will allow screening for PPAR␥ mutations in humans with metabolic disorders, whereas knowledge of its expression pattern and factors regulating its expression could be of major importance in understanding its biology.White adipose tissue is composed of adipocytes, which play a central role in lipid homeostasis and the maintenance of energy balance in vertebrates. These cells store energy in the form of triglycerides during periods of nutritional affluence and release it in the form of free fatty acids at times of nutritional deprivation. Excess of white adipose tissue leads to obesity (1-3), whereas its absence is associated with lipodystrophic syndromes (4). In contrast to the development of brown adipose tissue, which mainly takes place before birth, the development of white adipose tissue is the result of a continuous differentiation/development process throughout life (2, 5). During development, cells that are pluripotent become increasingly restricted to specific differentiation pathways. Adipocyte differentiation results from coordinate changes in the expression of several proteins, which are mostly involved in lipid storage and metabolism, that give rise to the characteristic adipocyte phenotype. The changes in expression of these specialized proteins are mainly the result of alterations in the transcription rates of their genes.Several transcription fac...
Myotonic dystrophy is the most common muscular dystrophy in adults and the first recognized example of an RNA-mediated disease. Congenital myotonic dystrophy (CDM1) and myotonic dystrophy of type 1 (DM1) or of type 2 (DM2) are caused by the expression of mutant RNAs containing expanded CUG or CCUG repeats, respectively. These mutant RNAs sequester the splicing regulator Muscleblind-like-1 (MBNL1), resulting in specific misregulation of the alternative splicing of other pre-mRNAs. We found that alternative splicing of the bridging integrator-1 (BIN1) pre-mRNA is altered in skeletal muscle samples of people with CDM1, DM1 and DM2. BIN1 is involved in tubular invaginations of membranes and is required for the biogenesis of muscle T tubules, which are specialized skeletal muscle membrane structures essential for excitation-contraction coupling. Mutations in the BIN1 gene cause centronuclear myopathy, which shares some histopathological features with myotonic dystrophy. We found that MBNL1 binds the BIN1 pre-mRNA and regulates its alternative splicing. BIN1 missplicing results in expression of an inactive form of BIN1 lacking phosphatidylinositol 5-phosphate-binding and membrane-tubulating activities. Consistent with a defect of BIN1, muscle T tubules are altered in people with myotonic dystrophy, and membrane structures are restored upon expression of the normal splicing form of BIN1 in muscle cells of such individuals. Finally, reproducing BIN1 splicing alteration in mice is sufficient to promote T tubule alterations and muscle weakness, a predominant feature of myotonic dystrophy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.