With the aim of elaborating a mobile application, accessible to anyone and with educational purposes, we present a method for tree species identification that relies on dedicated algorithms and explicit botany-inspired descriptors. Focusing on the analysis of leaves, we developed a working process to help recognize species, starting from a picture of a leaf in a complex natural background. A two-step active contour segmentation algorithm based on a polygonal leaf model processes the image to retrieve the contour of the leaf. Features we use afterwards are high-level geometrical descriptors that make a semantic interpretation possible, and prove to achieve better performance than more generic and statistical shape descriptors alone. We present the results, both in terms of segmentation and classification, considering a database of 50 European broad-leaved tree species, and an implementation of the system is available in the iPhone application Folia 1 .
This paper discusses the use of the computer vision in the interpretation of human gestures. Hand gestures would be an intuitive and ideal way of exchanging information with other people in a virtual space, guiding some robots to perform certain tasks in a hostile environment, or interacting with computers. Hand gestures can be divided into two main categories: static gestures and dynamic gestures. In this paper, a novel dynamic hand gesture recognition technique is proposed. It is based on the 2D skeleton representation of the hand. For each gesture, the hand skeletons of each posture are superposed providing a single image which is the dynamic signature of the gesture. The recognition is performed by comparing this signature with the ones from a gesture alphabet, using Baddeley's distance as a measure of dissimilarities between model parameters
Abstract. In this paper we present a system for tree leaf segmentation in natural images that combines a first, unrefined segmentation step, with an estimation of descriptors depicting the general shape of a simple leaf. It is based on a light polygonal model, built to represent most of the leaf shapes, that will be deformed to fit the leaf in the image. Avoiding some classic obstacles of active contour models, this approach gives promising results, even on complex natural photographs, and constitutes a solid basis for a leaf recognition process.
In the case of environmental samples, the use of a chemometrics-based prediction model is highly challenging because of the difficulty in experimentally creating a well-ranged reference sample set. In this study, we present a methodology using short wave infrared hyperspectral imaging to create a partial least squares regression model on a cored sediment sample. It was applied to a sediment core of the well-known Lake Bourget (Western Alps, France) to develop and validate a model for downcore high resolution LOI550 measurements used as a proxy of the organic matter. In lake and marine sediment, the organic matter content is widely used, for example, to reconstruct carbon flux variations through time. Organic matter analysis through routine analysis methods is time-and material-consuming, as well as not spatially resolved. A new instrument based on hyperspectral imaging allows high spatial and spectral resolutions to be acquired all along a sediment core. In this study, we obtain a model characterized by a 0.95 r prediction, with 0.77 wt% of model uncertainty based on 27 relevant wavelengths. The concentration map shows the variation inside each laminae and flood deposit. LOI550 reference values obtained with the loss on ignition are highly correlated to the inc/coh ratio used as a proxy of the organic matter in X-ray fluorescence with a correlation coefficient of 0.81. This ratio is also correlated with the averaged subsampled hyperspectral prediction with a r of 0.65.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.