SummaryBacteria of the Brucella genus are facultative intracellular class III pathogens. These bacteria are able to control the intracellular trafficking of their vacuole, presumably by the use of yet unknown translocated effectors. To identify such effectors, we used a high-throughput yeast two-hybrid screen to identify interactions between putative human phagosomal proteins and predicted Brucella spp. proteins. We identified a specific interaction between the human small GTPase Rab2 and a Brucella spp. protein named RicA. This interaction was confirmed by GST-pull-down with the GDP-bound form of Rab2. A TEM-b-lactamase-RicA fusion was translocated from Brucella abortus to RAW264.7 macrophages during infection. This translocation was not detectable in a strain deleted for the virB operon, coding for the type IV secretion system. However, RicA secretion in a bacteriological culture was still observed in a DvirB mutant. In HeLa cells, a DricA mutant recruits less GTP-locked myc-Rab2 on its Brucella-containing vacuoles, compared with the wild-type strain. We observed altered kinetics of intracellular trafficking and faster proliferation of the B. abortus DricA mutant in HeLa cells, compared with the wild-type control. Altogether, the data reported here suggest RicA as the first reported effector with a proposed function for B. abortus.
The type III secretion system (TTSS) of Pseudomonas aeruginosa is induced in vivo upon contact with eukaryotic cells and in vitro by calcium depletion in culture medium. We have observed a previously identified protein, PsrA, necessary for full activation of TTSS gene expression in P. aeruginosa. Electrophoretic mobility shift assays showed that recombinant PsrA could bind to the exsCEBA promoter region. A mutant with a deletion in the psrA gene was constructed. Using transcriptional fusions, we demonstrated that PsrA is required for the full activation of transcription of the TTSS regulatory operon exsCEBA and effector exoS, although the deletion mutant still responded to calcium depletion, to serum, and to host cell contact. The psrA mutant showed a marked decrease in the secretion of the type III effectors and weak resistance to phagocytelike PLB-985 cells. The defect in TTSS transcription and secretion in the psrA mutant could be complemented by expression in trans of psrA. PsrA was previously identified as a transcriptional activator of RpoS, a central regulator during stationary phase. We confirmed with our strain that RpoS has a negative effect on TTSS gene expression. Taken altogether, these results suggest that PsrA is a newly identified activator that is involved in the expression of the TTSS by enhancing the exsCEBA transcriptional level.
Immunotherapy requiring an efficient T lymphocyte response is initiated by antigen delivery to antigen-presenting cells. Several studies have assessed the efficiency of various antigen loading procedures, including microbial vectors. Here a live strain of Pseudomonas aeruginosa was engineered to translocate a recombinant antigenic protein into mammalian cells via the type III secretion system, a bacterial device translocating effector proteins into host cells. Optimization of the vector included virulence attenuation and determination of the N-terminal sequence allowing translocation of fused antigens into cells. In vitro delivery of an ovalbumin fragment by the bacterial vector into dendritic cells induced the activation of ovalbumin-specific CD8(+) T lymphocytes. Mice injected with the ovalbumin-delivering vector developed ovalbumin-specific CD8(+) T lymphocytes and were resistant to a subsequent challenge with an ovalbumin-expressing melanoma. Moreover, in a curative assay, injection of the vaccine vector 5 and 12 days after tumor implantation led to a complete cure in five of six animals. These results highlight the utility of type III secretion system-based vectors for anti-tumor immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.