Plant phenotyping consists in the observation of physical and biochemical traits of plant genotypes in response to environmental conditions. Challenges, in particular in context of climate change and food security, are numerous. High-throughput platforms have been introduced to observe the dynamic growth of a large number of plants in different environmental conditions. Instead of considering a few genotypes at a time (as it is the case when phenomic traits are measured manually), such platforms make it possible to use completely new kinds of approaches. However, the data sets produced by such widely instrumented platforms are huge, constantly augmenting and produced by increasingly complex experiments, reaching a point where distributed computation is mandatory to extract knowledge from data.In this paper, we introduce InfraPhenoGrid, the infrastructure we designed and deploy to efficiently manage data sets produced by the PhenoArch plant phenomics platform in the context of the French Phenome Project. Our solution consists in deploying scientific workflows on a Grid using a middleware to pilot workflow executions. Our approach is user-friendly in the sense that despite the intrinsic complexity of the infrastructure, running scientific workflows and understanding results obtained (using provenance information) is kept as simple as possible for end-users.
SmartTools is a development environment generator that provides a structure editor and semantic tools as main features. The well-known visitor pattern technique is commonly used for designing semantic analysis, it has been automated and extended. SmartTools is easy to use thanks to its graphical user interface designed with the Java Swing APIs. It is built with an open architecture convinient for a partial or total integration of SmartTools in other environments. It makes the addition of new software components in SmartTools easy. As a result of the modular architecture, we built a distributed instance of SmartTools which required minimal effort. Being open to the XML technologies offers all the features of SmartTools to any language defined with those technologies. But most of all, with its open architecture, SmartTools takes advantage of all the developments made around those technologies, like DOM, through the XML APIs. The fast development of SmartTools (which is a young project, one year old) validates our choices of being open and generic.The main goal of this tool is to provide help and support for designing software development environments for programming languages as well as application languages defined with XML technologies.
FNC-2 is a new attribute grammar processing system aiming at expressive power, efficiency, ease of use and versatility.Its development at INRIA started in 1986, and a first running prototype is available since early 1989. Its most important features are: efficient exhaustive and incremental visit-sequence-based evaluation of strongly (absolutely) non-circular AGs; extensive space optimizations; a specially-designed AG-description language, with provisions for true modularity;portability and versatility of the generated evaluators; complete environment for application development. This paper briefly describes the design and implementation of FNC-2 and its peripherals. Then preliminary experience with the system is reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.