Ocean acidification causes corals to calcify at reduced rates, but current understanding of the underlying processes is limited. Here, we conduct a mechanistic study into how seawater acidification alters skeletal growth of the coral Stylophora pistillata. Reductions in colony calcification rates are manifested as increases in skeletal porosity at lower pH, while linear extension of skeletons remains unchanged. Inspection of the microstructure of skeletons and measurements of pH at the site of calcification indicate that dissolution is not responsible for changes in skeletal porosity. Instead, changes occur by enlargement of corallite-calyxes and thinning of associated skeletal elements, constituting a modification in skeleton architecture. We also detect increases in the organic matrix protein content of skeletons formed under lower pH. Overall, our study reveals that seawater acidification not only causes decreases in calcification, but can also cause morphological change of the coral skeleton to a more porous and potentially fragile phenotype.
The bicarbonate ion (HCO3−) is involved in two major physiological processes in corals, biomineralization and photosynthesis, yet no molecular data on bicarbonate transporters are available. Here, we characterized plasma membrane-type HCO3− transporters in the scleractinian coral Stylophora pistillata. Eight solute carrier (SLC) genes were found in the genome: five homologs of mammalian-type SLC4 family members, and three of mammalian-type SLC26 family members. Using relative expression analysis and immunostaining, we analyzed the cellular distribution of these transporters and conducted phylogenetic analyses to determine the extent of conservation among cnidarian model organisms. Our data suggest that the SLC4γ isoform is specific to scleractinian corals and responsible for supplying HCO3− to the site of calcification. Taken together, SLC4γ appears to be one of the key genes for skeleton building in corals, which bears profound implications for our understanding of coral biomineralization and the evolution of scleractinian corals within cnidarians.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.