Despite the increased use of vaccination in several Asian countries, Japanese Encephalitis (JE) remains the most important cause of viral encephalitis in Asia in humans with an estimated 68,000 cases annually. Considered a rural disease occurring mainly in paddy-field dominated landscapes where pigs are amplifying hosts, JE may nevertheless circulate in a wider range of environment given the diversity of its potential hosts and vectors. The main objective of this study was to assess the intensity of JE transmission to pigs in a peri-urban environment in the outskirt of Phnom Penh, Cambodia. We estimated the force of JE infection in two cohorts of 15 sentinel pigs by fitting a generalised linear model on seroprevalence monitoring data observed during two four-month periods in 2014. Our results provide evidence for intensive circulation of JE virus in a periurban area near Phnom Penh, the capital and most populated city of Cambodia. Understanding JE virus transmission in different environments is important for planning JE virus control in the long term and is also an interesting model to study the complexity of vector-borne diseases. Collecting quantitative data such as the force of infection will help calibrate epidemiological model that can be used to better understand complex vector-borne disease epidemiological cycles.
BackgroundGlobally there are an estimated 390 million dengue infections per year, of which 96 million are clinically apparent. In Cambodia, estimates suggest as many as 185,850 cases annually. The World Health Organization global strategy for dengue prevention aims to reduce mortality rates by 50% and morbidity by 25% by 2020. The adoption of integrated vector management approach using community-based methods tailored to the local context is one of the recommended strategies to achieve these objectives. Understanding local knowledge, attitudes and practices is therefore essential to designing suitable strategies to fit each local context.Methods and findingsA Knowledge, Attitudes and Practices survey in 600 randomly chosen households was administered in 30 villages in Kampong Cham which is one of the most populated provinces of Cambodia. KAP surveys were administered to a sub-sample of households where an entomology survey was conducted (1200 households), during which Aedes larval/pupae and adult female Aedes mosquito densities were recorded. Participants had high levels of knowledge regarding the transmission of dengue, Aedes breeding, and biting prevention methods; the majority of participants believed they were at risk and that dengue transmission is preventable. However, self-reported vector control practices did not match observed practices recorded in our surveys. No correlation was found between knowledge and observed practices either.ConclusionAn education campaign regarding dengue prevention in this setting with high knowledge levels is unlikely to have any significant effect on practices unless it is incorporated in a more comprehensive strategy for behavioural change, such a COMBI method, which includes behavioural models as well as communication and marketing theory and practice.Trial registrationISRCTN85307778.
BackgroundEvidence on the effectiveness of low-cost, sustainable, biological vector-control tools for the Aedes mosquitoes is limited. Therefore, the purpose of this trial is to estimate the impact of guppy fish (guppies), in combination with the use of the larvicide pyriproxyfen (Sumilarv® 2MR), and Communication for Behavioral Impact (COMBI) activities to reduce entomological indices in Cambodia.Methods/designIn this cluster randomized controlled, superiority trial, 30 clusters comprising one or more villages each (with approximately 170 households) will be allocated, in a 1:1:1 ratio, to receive either (1) three interventions (guppies, Sumilarv® 2MR, and COMBI activities), (2) two interventions (guppies and COMBI activities), or (3) control (standard vector control). Households will be invited to participate, and entomology surveys among 40 randomly selected households per cluster will be carried out quarterly. The primary outcome will be the population density of adult female Aedes mosquitoes (i.e., number per house) trapped using adult resting collections. Secondary outcome measures will include the House Index, Container Index, Breteau Index, Pupae Per House, Pupae Per Person, mosquito infection rate, guppy fish coverage, Sumilarv® 2MR coverage, and percentage of respondents with knowledge about Aedes mosquitoes causing dengue. In the primary analysis, adult female Aedes density and mosquito infection rates will be aggregated over follow-up time points to give a single rate per cluster. This will be analyzed by negative binomial regression, yielding density ratios.DiscussionThis trial is expected to provide robust estimates of the intervention effect. A rigorous evaluation of these vector-control interventions is vital to developing an evidence-based dengue control strategy and to help direct government resources.Trial registrationCurrent Controlled Trials, ID: ISRCTN85307778. Registered on 25 October 2015.Electronic supplementary materialThe online version of this article (doi:10.1186/s13063-017-2105-2) contains supplementary material, which is available to authorized users.
Dengue fever is a major public health concern, including 185,000 annual cases in Cambodia. Aedes aegypti is the primary vector for dengue transmission and is targeted with insecticide treatments. This study characterized the insecticide resistance status of Ae aegypti from rural and urban locations. The susceptibility to temephos, permethrin, and deltamethrin of Ae aegypti was evaluated in accordance with World Health Organization instructions. All the field populations showed lower mortality rate to temephos compared with the sensitive strain with resistance ratio 50 (RR) varying from 3.3 to 33.78 and RR from 4.2 to 47 compared with the sensitive strain, demonstrating a generalized resistance of larvae to the temephos in Cambodia. Ae aegypti adult populations were highly resistant to permethrin regardless of province or rural/urban classification with an average mortality of 0.02%. Seven of the 8 field populations showed resistance to deltamethrin. These results are alarming for dengue vector control, as widespread resistance may compromise the entomological impact of larval control operations. Innovative vector control tools are needed to replace ineffective pesticides in Cambodia.
Evidence on the effectiveness of low-cost, sustainable biological vector control tools for Aedes mosquitoes is limited. Therefore, the purpose of this trial was to estimate the impact of guppy fish in combination with the larvicide pyriproxyfen (PPF) (Sumilarv® 2MR) and communication for behavioral impact (COMBI) activities to reduce entomological indices in Cambodia. In this cluster randomized, controlled superiority trial, 30 clusters comprised of one or more villages each was allocated in a 1:1:1 ratio to receive either 1) all three interventions (guppies, PPF, and COMBI), 2) two interventions (guppies and COMBI), or 3) control (standard vector control). Entomological surveys among 40 randomly selected households per cluster were carried out quarterly. The primary outcome was the population abundance of adult female Aedes mosquitoes trapped using adult resting collections. In the primary analysis, adult female Aedes abundance and mosquito infection rates was aggregated over follow-up time points to give a single rate per cluster. These data were analyzed by negative binomial regression, yielding abundance ratios (ARs). The number of Aedes females was reduced roughly by half compared with the control in both the guppy, PPF, and COMBI arm (AR = 0.54; 95% CI, 0.34–0.85; P = 0.0073); and the guppy and COMBI arm (AR = 0.49; 95% CI, 0.31–0.77; P = 0.0021). The effectiveness demonstrated and extremely low cost of including fish rearing in community-based health structures suggest they should be considered as a vector control tool as long as the benefits outweigh any potential environmental concerns. Sumilarv® 2MR was also highly accepted and preferred over current vector control tools used in Cambodia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.