Enabling Hoare-style reasoning for low-level code is attractive since it opens the way to regain structure and modularity in a domain where structure is essentially absent. The field, however, has not yet arrived at a fully satisfactory solution, in the sense of avoiding restrictions on control flow (important for compiler optimization), controlling access to intermediate program points (important for modularity), and supporting total correctness. Proposals in the literature support some of these properties, but a solution that meets them all is yet to be found. We introduce the novel Hoare-style program logic LA, which interprets postconditions relative to program points when these are first encountered. The logic can support both partial and total correctness, derive contracts for arbitrary control flow, and allows one to freely choose decomposition strategy during verification while avoiding step-indexed approximations and global invariants. The logic can be instantiated for a variety of concrete instruction set architectures and intermediate languages. The rules of LA have been verified in the interactive theorem prover HOL4 and integrated with the toolbox HolBA for semi-automated program verification, making it applicable to the ARMv6 and ARMv8 instruction sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.