Pulmonary arterial hypertension (PAH) in congenital cardiac shunts can be reversed by hemodynamic unloading (HU) through shunt closure. However, this reversibility potential is lost beyond a certain point in time. The reason why PAH becomes irreversible is unknown. In this study, we used MCT+shunt-induced PAH in rats to identify a dichotomous reversibility response to HU, similar to the human situation. We compared vascular profiles of reversible and irreversible PAH using RNA sequencing. Cumulatively, we report that loss of reversibility is associated with a switch from a proliferative to a senescent vascular phenotype and confirmed markers of senescence in human PAH-CHD tissue. In vitro, we showed that human pulmonary endothelial cells of patients with PAH are more vulnerable to senescence than controls in response to shear stress and confirmed that the senolytic ABT263 induces apoptosis in senescent, but not in normal, endothelial cells. To support the concept that vascular cell senescence is causal to the irreversible nature of end-stage PAH, we targeted senescence using ABT263 and induced reversal of the hemodynamic and structural changes associated with severe PAH refractory to HU. The factors that drive the transition from a reversible to irreversible pulmonary vascular phenotype could also explain the irreversible nature of other PAH etiologies and provide new leads for pharmacological reversal of end-stage PAH.
Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Pulmonary arterial hypertension (PAH) is a progressive and lethal pulmonary vascular disease (PVD). Although in recent years outcome has improved by new treatments that delay disease progression, a cure has not yet been achieved. In PAH associated with congenital heart disease (CHD), remodeling of the pulmonary vasculature reaches an irreversible phenotype similar to all forms of end-stage PAH. In PAH-CHD, however, also an early stage is recognised, which can be completely reversible. This reversible phase has never been recognised in other forms of PAH, most likely because these patients are only diagnosed once advanced disease has developed. We propose that the clinical model of PAH-CHD, with an early reversible and advanced irreversible stage, offers unique opportunities to study pathophysiological and molecular mechanisms that orchestrate the transition from reversible medial hypertrophy into irreversible plexiform lesions. Comprehension of these mechanisms is not only pivotal in clinical assessment of disease progression and operability of patients with PAH-CHD; specific targeting of these mechanisms may also lead to pharmacological interventions that transform 'irreversible' plexiform lesions into a reversible PVD: one that is amenable for a cure. In recent years, significant steps have been made in the strive to 'reverse the irreversible'. This review provides an overview of current clinical and experimental knowledge on the reversibility of PAH, focussing on flow-associated mechanisms, and the near-future potential to advance this field.
Pulmonary arterial hypertension (PAH) in congenital heart disease (CHD) can be reversed by early shunt closure, but this potential is lost beyond a certain point of no return. Therefore, it is crucial to accurately assess the reversibility of this progressive pulmonary arteriopathy in an early stage. Reversibility assessment is currently based on a combination of clinical symptoms and haemodynamic variables such as pulmonary vascular resistance. These measures, however, are of limited predictive value and leave many patients in the grey zone. This review provides a concise overview of the mechanisms involved in flow-dependent progression of PAH in CHD and evaluates existing and future alternatives to more directly investigate the stage of the pulmonary arteriopathy. Structural quantification of the pulmonary arterial tree using fractal branching algorithms, functional imaging with intravascular ultrasound, nuclear imaging, putative new blood biomarkers, genetic testing and the potential for transcriptomic analysis of circulating endothelial cells and educated platelets are being reviewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.