Plants grow in dense vegetations at the risk of being out-competed by neighbors. To increase their competitive power, plants display adaptive responses, such as rapid shoot elongation (shade avoidance) to consolidate light capture. These responses are induced upon detection of proximate neighbors through perception of the reduced ratio between red (R) and far-red (FR) light that is typical for dense vegetations. The plant hormone auxin is a central regulator of plant development and plasticity, but until now it has been unknown how auxin transport is controlled to regulate shade-avoidance responses. Here, we show that low R:FR detection changes the cellular location of the PIN-FORMED 3 (PIN3) protein, a regulator of auxin efflux, in Arabidopsis seedlings. As a result, auxin levels in the elongating hypocotyls are increased under low R:FR. Seedlings of the pin3-3 mutant lack this low R:FR-induced increase of endogenous auxin in the hypocotyl and, accordingly, have no elongation response to low R:FR. We hypothesize that low R:FR-induced stimulation of auxin biosynthesis drives the regulation of PIN3, thus allowing shade avoidance to occur. The adaptive significance of PIN3-mediated control of shade-avoidance is shown in plant competition studies. It was found that pin3 mutants are outcompeted by wild-type neighbors who suppress fitness of pin3-3 by 40%. We conclude that low R:FR modulates the auxin distribution by a change in the cellular location of PIN3, and that this control can be of great importance for plants growing in dense vegetations.phytochrome | phenotypic plasticity | plant-plant signaling
SUMMARYPlant growth in dense vegetation can be strongly affected by competition for light between neighbours. These neighbours can not only be detected through phytochrome-mediated perception of a reduced red:far-red ratio, but also through altered blue light fluence rates. A reduction in blue light (low blue) induces a set of phenotypic traits, such as shoot elongation, to consolidate light capture; these are called shade avoidance responses. Here we show that both auxin and brassinosteroids (BR) play an important role in the regulation of enhanced hypocotyl elongation of Arabidopsis seedlings in response to blue light depletion. Only when both hormones are experimentally blocked simultaneously, using mutants and chemical inhibitors, will the response be fully inhibited. Upon exposure to low blue several members of the cell wall modifying XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE (XTH) protein family are regulated as well. Interestingly, auxin and BR each regulate a subset of these XTHs, by which they could regulate cell elongation. We hypothesize that auxin and BR regulate specific XTH genes in a non-redundant and non-synergistic manner during low-blueinduced shade avoidance responses of Arabidopsis seedlings, which explains why both hormones are required for an intact low-blue response.
Plants modify growth in response to the proximity of neighbors. Among these growth adjustments are shade avoidance responses, such as enhanced elongation of stems and petioles, that help plants to reach the light and outgrow their competitors. Neighbor detection occurs through photoreceptor-mediated detection of light spectral changes (i.e. reduced red:far-red ratio [R:FR] and reduced blue light intensity). We recently showed that physiological regulation of these responses occurs through light-mediated degradation of nuclear, growth-inhibiting DELLA proteins, but this appeared to be only part of the full mechanism. Here, we present how two hormones, auxin and ethylene, coregulate DELLAs but regulate shade avoidance responses through DELLA-independent mechanisms in Arabidopsis (Arabidopsis thaliana). Auxin appears to be required for both seedling and mature plant shoot elongation responses to low blue light and low R:FR, respectively. Auxin action is increased upon exposure to low R:FR and low blue light, and auxin inhibition abolishes the elongation responses to these light cues. Ethylene action is increased during the mature plant response to low R:FR, and this growth response is abolished by ethylene insensitivity. However, ethylene is also a direct volatile neighbor detection signal that induces strong elongation in seedlings, possibly in an auxin-dependent manner. We propose that this novel ethylene and auxin control of shade avoidance interacts with DELLA abundance but also controls independent targets to regulate adaptive growth responses to surrounding vegetation.
Plants in dense vegetation compete for resources and detect competitors through reflection of far-red (FR) light from surrounding plants. This reflection causes a reduced red (R):FR ratio, which is sensed through phytochromes. Low R:FR induces shade avoidance responses of the shoot and also changes the root system architecture, although this has received little attention so far. Here, we investigate the molecular mechanisms through which light detection in the shoot regulates root development in We do so using a combination of microscopy, gene expression, and mutant study approaches in a setup that allows root imaging without exposing the roots to light treatment. We show that low R:FR perception in the shoot decreases the lateral root (LR) density by inhibiting LR emergence. This decrease in LR emergence upon shoot FR enrichment is regulated by phytochrome-dependent accumulation of the transcription factor ELONGATED HYPOCOTYL5 (HY5) in the LR primordia. HY5 regulates LR emergence by decreasing the plasma membrane abundance of PIN-FORMED3 and LIKE-AUX1 3 auxin transporters. Accordingly, FR enrichment reduces the auxin signal in the overlaying cortex cells, and this reduces LR outgrowth. This shoot-to-root communication can help plants coordinate resource partitioning under competition for light in high density fields.
Plants in dense vegetation perceive their neighbors primarily through changes in light quality. Initially, the ratio between red (R) and far-red (FR) light decreases due to reflection of FR by plant tissue well before shading occurs. Perception of low R:FR by the phytochrome photoreceptors induces the shade avoidance response [1], of which accelerated elongation growth of leaf-bearing organs is an important feature. Low R:FR-induced phytochrome inactivation leads to the accumulation and activation of the transcription factors PHYTOCHROME-INTERACTING FACTORs (PIFs) 4, 5, and 7 and subsequent expression of their growth-mediating targets [2, 3]. When true shading occurs, transmitted light is especially depleted in red and blue (B) wavelengths, due to absorption by chlorophyll [4]. Although the reduction of blue wavelengths alone does not occur in nature, long-term exposure to low B light induces a shade avoidance-like response that is dependent on the cryptochrome photoreceptors and the transcription factors PIF4 and PIF5 [5-7]. We show in Arabidopsis thaliana that low B in combination with low R:FR enhances petiole elongation similar to vegetation shade, providing functional context for a low B response in plant competition. Low B potentiates the low R:FR response through PIF4, PIF5, and PIF7, and it involves increased PIF5 abundance and transcriptional changes. Low B attenuates a low R:FR-induced negative feedback loop through reduced gene expression of negative regulators and reduced HFR1 levels. The enhanced response to combined phytochrome and cryptochrome inactivation shows how multiple light cues can be integrated to fine-tune the plant's response to a changing environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.