Resumo-Na literatura, encontra-se evidências de que a política de atribuição fixa do espectro cria o problema da subutilização do recurso sendo uma desvantagem devido a crescente demanda da sociedade moderna. Nesse sentido, pesquisadores vêm explorando soluções para acesso dinâmico do espectro condensadas em sistemas de comunicações inteligentes que devem realizar continuamente a tarefa de sensoriamento do espectro. Nesse contexto, a identificação de parâmetros dos usuários é uma etapa crítica. Por exemplo, um dos parâmetros mais importantes, para usuários primários, é o tipo de modulação. Especificamente neste artigo, explora-se uma técnica de classificação automática de modulações analógicas, digitais, por espalhamento espectral e multiportadoras, ou seja, a classificação é feita para modulações monoportadora (AM, FM, BPSK, QPSK, 16QAM, 64QAM, GMSK e WCDMA) e multiportadora (OFDM). Adicionalmente, tem-se inserção de formatação de pulso, canal ruidoso e amostragem em banda passante. Neste trabalho, utilizase método por extração de características e considera-se um ampla variedade de características com um total de 29. Para o classificador multiclasse, utiliza-se o SVM e decomposição binária por matrizes de código. Os procedimentos experimentais foram realizados considerando-se uma base de dados com 3600 sinais modulados. Os resultados experimentais indicam que a proposta é promissora e atinge boas taxas de reconhecimento comparados a [1] e [2], com resultados relevantes na literatura.
Some bands in the frequency spectrum have become overloaded and others underutilized due to the considerable increase in demand and user allocation policy. Cognitive radio applies detection techniques to dynamically allocate unlicensed users. Cooperative spectrum sensing is currently showing promising results. Therefore, in this work, we propose a cooperative spectrum detection system based on a residual neural network architecture combined with feature extractor and random forest classifier. The objective of this paper is to propose a cooperative spectrum sensing approach that can achieve high accuracy in higher levels of noise power density with less unlicensed users cooperating in the system. Therefore, we propose to extract features of the sensing information of each unlicensed user, then we use a random forest to classify if there is a presence of a licensed user in each band analyzed by the unlicensed user. Then, information from several unlicensed users are shared to a fusion center, where the decision about the presence or absence of a licensed user is accomplished by a model trained by a residual neural network. In our work, we achieved a high level of accuracy even when the noise power density is high, which means that our proposed approach is able to recognize the presence of a licensed user in 98% of the cases when the evaluated channel suffers a high level of noise power density (−134 dBm/Hz). This result was achieved with the cooperation of 10 unlicensed users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.