Carbaporphyrin ketals are porphyrinoid compounds in which a pyrrole ring of a typical porphyrin macrocycle has been replaced by a ketal-substituted indene ring. It was recently demonstrated that these compounds are effective in vitro against Leishmania tarentolae. Their in vitro effectiveness is increased when they are exposed to visible light; they act as photosensitizers capable of mediating the production of reactive oxygen species (ROS). Following on this evidence, the effectiveness and cytotoxicity of the dimethyl and diethyl carbaporphyrin ketals (CKOMe and CKOEt, respectively) were determined in vitro using pathogenic Leishmania species with and without exposure to visible light (2 and 4 h). The effectiveness against various pathogenic Leishmania species was determined to be in a micromolar range. Additionally, the effect of encapsulating the carbaporphyrin ketals in liposome formulations was tested. Liposomal delivery diminished their toxicity, while the effectiveness was enhanced upon exposure to visible light (photodynamic effect). The cytotoxicity levels for human U937 cells and hamster peritoneal macrophages were in the ranges of 0.3 to 9 M and 7 to 330 M, respectively. When tested in vivo, using a hamster (Mesocricetus auratus) model of cutaneous leishmaniasis, CKOMe was active even in the dark, suggesting that the compound, once metabolized in the animal tissue, produces an active ingredient that does not seem to be photosensitive. Reduction in lesion size, histopathologic analyses, and smears confirmed the in vivo effectiveness of the compound, since the parasitic load was diminished without noticeable toxic effects.
The in vitro and in vivo antileishmanial and cytotoxic activities of thymol and structural derivatives in comparison to those of Glucantime were studied. The results showed here suggest that thymol and hemisynthetic derivatives have promising antileishmanial potential and could be considered as new lead structures in the search for novel antileishmanial drugs.
BackgroundThe leishmaniases are a complex of neglected tropical diseases caused by more than 20 Leishmania parasite species, for which available therapeutic arsenal is scarce and unsatisfactory. Pentavalent antimonials (SbV) are currently the first-line pharmacologic therapy for leishmaniasis worldwide, but resistance to these compounds is increasingly reported. Alkyl-lysophospoholipid analogs (ALPs) constitute a family of compounds with antileishmanial activity, and one of its members, miltefosine, has been approved as the first oral treatment for visceral and cutaneous leishmaniasis. However, its clinical use can be challenged by less impressive efficiency in patients infected with some Leishmania species, including L. braziliensis and L. mexicana, and by proneness to develop drug resistance in vitro.Methodology/Principal FindingsWe found that ALPs ranked edelfosine>perifosine>miltefosine>erucylphosphocholine for their antileishmanial activity and capacity to promote apoptosis-like parasitic cell death in promastigote and amastigote forms of distinct Leishmania spp., as assessed by proliferation and flow cytometry assays. Effective antileishmanial ALP concentrations were dependent on both the parasite species and their development stage. Edelfosine accumulated in and killed intracellular Leishmania parasites within macrophages. In vivo antileishmanial activity was demonstrated following oral treatment with edelfosine of mice and hamsters infected with L. major, L. panamensis or L. braziliensis, without any significant side-effect. Edelfosine also killed SbV-resistant Leishmania parasites in in vitro and in vivo assays, and required longer incubation times than miltefosine to generate drug resistance.Conclusions/SignificanceOur data reveal that edelfosine is the most potent ALP in killing different Leishmania spp., and it is less prone to lead to drug resistance development than miltefosine. Edelfosine is effective in killing Leishmania in culture and within macrophages, as well as in animal models infected with different Leishmania spp. and SbV-resistant parasites. Our results indicate that edelfosine is a promising orally administered antileishmanial drug for clinical evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.