Carrageenans are sulfated galactans found in certain red seaweeds with proven biological activities. In this work, we have prepared purified native and degraded κ-, ι-; and λ-carrageenans, including the disaccharides (carrabioses) and disaccharide-alditols (carrabiitols) from seaweed extracts as potential antitumor compounds and identified the active principle of the cytotoxic and potential antitumor properties of these compounds. Both κ and ι-carrageenan, as well as carrageenan oligosaccharides showed cytotoxic effect over LM2 tumor cells. Characterized disaccharides (carrabioses) and the reduced product carrabiitols, were also tested. Only carrabioses were cytotoxic, and among them, κ-carrabiose was the most effective, showing high cytotoxic properties, killing the cells through an apoptotic pathway. In addition, the cells surviving treatment with κ-carrabiose, showed a decreased metastatic ability in vitro , together with a decreased cell-cell and cell-matrix interactions, thus suggesting possible antitumor potential. Overall, our results indicate that most cytotoxic compounds derived from carrageenans have lower molecular weights and sulfate content. Potential applications of the results emerging from the present work include the use of disaccharide units such as carrabioses coupled to antineoplasics in order to improve its cytotoxicity and antimetastatic properties, and the use of ι-carrageenan as adjuvant or carrier in anticancer treatments.
a b s t r a c tThe aims of this work were to obtain different samples of insoluble soybean polysaccharides (ISPS) from defatted soy flour and to study their potential application as O/W emulsifier. In this regard, the insoluble residue (okara) resulting from an aqueous extraction (60 C, pH 9.0), was submitted to an acidic extraction (pH 3.5, 120 C) without or with a pretreatment (high pressure homogenization or sonication). The insoluble residues of these extractions were dried (oven, 70 C or vacuum post-treatment with 2propanol, 40 C) yielding different ISPS samples. Aqueous dispersions of ISPS samples (1e2% w/w, pH 3 and 7), were used to prepare coarse and fine O/W emulsions. Emulsion stability against creaming and coalescence processes, and the rheological behavior were analyzed. ISPS samples obtained by okara pretreatment and vacuum dried post-treatment with 2-propanol allow to produces emulsions with high values of flocculation degree, increasing the stability of the particle size, and allowing the formation of stronger gel-like emulsions. These pretreatments expose internal sites of the polysaccharide and protein structures, increasing their superficial hydrophobicity and, therefore, allow a strong absorption of the macromolecules at the oil-water interface and/or the formation of external layers, increasing the rigidity of the interfacial film and contributing to the formation of hydrated flocs. Also, these treatments could solubilize certain compounds in okara that would interfere negatively in the formation of the interfacial film. Particularly, sample obtained by high pressures homogenization of the okara presented the best emulsifying properties and it was not significantly affected by variations in the pH of the emulsion. The results of this research work demonstrate a high potential of application of the ISPS samples as O/W emulsifier, under acid and neutral conditions, increasing the added value of an important by-product of the soybean industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.