Therapies for genetic disorders caused by mutated mitochondrial DNA are an unmet need, in large part due barriers in delivering DNA to the organelle and the absence of relevant animal models. We injected into mouse eyes a mitochondrially targeted Adeno-Associated-Virus (MTS-AAV) to deliver the mutant human NADH ubiquinone oxidoreductase subunit I (hND1/m.3460G>A ) responsible for Leber’s hereditary optic neuropathy, the most common primary mitochondrial genetic disease. We show that the expression of the mutant hND1 delivered to retinal ganglion cells (RGC) layer colocalizes with the mitochondrial marker PORIN and the assembly of the expressed hND1 protein into host respiration complex I. The hND1 injected eyes exhibit hallmarks of the human disease with progressive loss of RGC function and number, as well as optic nerve degeneration. We also show that gene therapy in the hND1 eyes by means of an injection of a second MTS-AAV vector carrying wild type human ND1 restores mitochondrial respiratory complex I activity, the rate of ATP synthesis and protects RGCs and their axons from dysfunction and degeneration. These results prove that MTS-AAV is a highly efficient gene delivery approach with the ability to create mito-animal models and has the therapeutic potential to treat mitochondrial genetic diseases.
The purpose of this study was to quantify retinal structural, vascular, and functional changes in patients with relapsing-remitting multiple sclerosis (RRMS) over 1 year.Methods: Eighty-eight eyes of 44 patients with RRMS underwent assessments of low contrast letter acuity (LCLA), retinal ganglion cell function detected by the steady-state pattern electroretinogram (PERG), axonal microstructural integrity measured as birefringence, intraretinal layer thicknesses by ultra-high-resolution optical coherence tomography (OCT), volumetric vessel density (VVD) by OCT angiography, and retinal tissue perfusion (RTP) by the Retinal Function Imager (RFI). All measurements were performed at baseline and 1-year follow-up. The impacts of disease activities and a history of optic neuritis (ON) were analyzed.Results: Compared to baseline, there were no significant differences in all variables (P > 0.05), except for the axonal birefringence and RTP. The birefringence's of the retinal fiber layer at the temporal and superior quadrants was significantly decreased (P < 0.05), whereas RTP was significantly increased (P < 0.05). In the subgroup with ON, significantly longer PERG latency and decreased VVD were observed at follow-up (P < 0.05). In patients with improved LCLA, significantly increased RTP and decreased VVD (P < 0.05) were also observed.Conclusions: This is the first longitudinal study that assessed the RTP and VVD, along with other retinal structural and functional parameters in MS. The recovery of retinal vascular function occurred with the improved LCLA, suggesting that these measurements may be associated with disease progression.Translational Relevance: The retinal microvascular changes could be potential biomarkers for monitoring therapeutic efficacy in MS.
Purpose The purpose of this study was to compare the baseline steady-state pattern electroretinogram (SS-PERG) of patients with G11778A Leber hereditary optic neuropathy (LHON) with different stages of visual acuity (VA) loss before allotopic gene therapy (GT). Methods Patients ( n = 28) were enrolled into groups (GT I: chronic bilateral VA ≤35 Early Treatment Diabetic Retinopathy Study [ETDRS]; GT II: acute bilateral VA ≤35 ETDRS; GT III: acute unilateral, VA ≤35 ETDRS, and better eye VA ≥70 ETDRS) and tested with SS-PERG together with 210 age-matched normal controls (NCs). SS-PERG amplitude (nV) and latency (ms) of each eye were averaged for groups GT I, GT II, and NC. Symptomatic eyes (GT III-S) and asymptomatic eyes (GT III-A) of group GT III were included separately and accounted for by using generalized estimating equation (GEE) methods. Results Compared to NC, SS-PERG amplitudes were reduced similarly by approximately 50% ( P < 0.001) among all GT groups (NC > GT I, GT II, GT III-S, and GT III-A). SS-PERG latencies were shorter by ≥3.5 ms in all LHON groups and differed by disease stage (G III-A < NC, P = 0.002; GT III-S < GT III-A, P = 0.01; GT II < GT III-S, P = 0.03; GT I < NC, P < 0.001, but not different from other GT groups, all P > 0.1). Conclusions Although SS-PERG amplitude reduction did not distinguish between disease stages, SS-PERG latency shortening occurred in asymptomatic eyes and symptomatic eyes and distinguished between disease stages. Translational Relevance SS-PERG latency shortening is consistent with primary damage of smaller/slower axons and sparing of larger/faster axons and may provide an objective staging of LHON, which may be helpful to determine efficacy in LHON trials.
Purpose The purpose of this study was to investigate local differences of macular retinal ganglion cell (RGC) function by means of the steady-state pattern electroretinogram (SS-PERG). Methods SS-PERGs were recorded in healthy subjects ( n = 43) in response to gratings (1.6 c/deg, 15.63 reversals/s, and 98% contrast) presented on an LED display (800 cd/m 2 , 12.5 degrees eccentricity at 30 cm viewing distance) partitioned in triangular sectors (inferior [I]; nasal [N]; superior [S]; and temporal [T]) or concentric regions (central [C] and annulus [A]). For each partition, response amplitude (nV), amplitude adaptation (% change over recording time), phase/latency (deg/ms), and oscillatory potentials (OPs) amplitude (root mean square [RMS] nV) were measured. Data were analyzed with Generalized Estimating Equation (GEE) statistics. Results Amplitude differed ( P < 0.001) between sectors (I: 254 nV; N: 328 nV; S: 275 nV; T: 264 nV; and N>T, I) as well as concentrically (C: 684 nV; A: 323 nV; and C>A). Latency did not differ between sectors (range = 53–54 ms, P = 0.45) or concentrically (range = 51–51 ms, P = 0.7). Adaptation did not differ ( P = 0.66) concentrically (C: −19% and A: −22%) but differed ( P = 0.004) between sectors (I: +25% and S: −29%). The OP amplitude did not differ ( P = 0.5) between sectors (range = 63–73 nV) as well as concentrically (range = 82–90 nV, P = 0.3). Conclusions Amplitude profiles paralleled RGC densities from histological studies. Adaptation profile suggested greater autoregulatory challenge in the inferior retina. Latency profile may reflect axonal conduction time to the optic nerve head assuming a direct relationship between axon length and its size/velocity. Location-independent OPs may reflect preganglionic activity. Translational Relevance Normal macular RGC function displays local differences that may be related to local vulnerability in optic nerve disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.