Bipolar disorder (BD) is a heritable mental illness with complex etiology. We performed a genome-wide association study (GWAS) of 41,917 BD cases and 371,549 controls of European ancestry, which identified 64 associated genomic loci. BD risk alleles were enriched in genes in synaptic signaling pathways and brain-expressed genes, particularly those with high specificity of expression in neurons of the prefrontal cortex and hippocampus. Significant signal enrichment was found in genes encoding targets of antipsychotics, calcium channel blockers, antiepileptics, and anesthetics. Integrating eQTL data implicated 15 genes robustly linked to BD via gene expression, encoding druggable targets such as HTR6, MCHR1, DCLK3 and FURIN. Analyses of BD subtypes indicated high but imperfect genetic correlation between BD type I and II and identified additional associated loci. Together, these results advance our understanding of the biological etiology of BD, identify novel therapeutic leads, and prioritize genes for functional follow-up studies.
SUMMARY:The beneficial effects of statins on the reduction of cardiovascular events has been partly attributed to their anti-inflammatory properties. In the complex of the different pathogenetic events leading to atherosclerosis, recent data suggest a central role of monocyte chemotactic protein-1 (MCP-1), because mice knock-out for MCP-1 or its receptor CC-chemokine receptor 2 were considerably resistant to plaque formation. In this study we investigated the effect of different statins on in vitro and in vivo production of MCP-1. Lovastatin and simvastatin caused a dose-dependent inhibition of MCP-1 production in peripheral blood mononuclear cells exposed to lipopolysaccharide or inactivated Streptococcus hemoliticus and in human endothelial cells exposed to interleukin-1. The addition of mevalonate overrode the inhibitory effect of statins indicating that mevalonate-derived products are important for chemokine production. The in vivo anti-inflammatory effect of statins was investigated using the mouse air-pouch model of local inflammation. Lovastatin and pravastatin were orally administered to mice according to a treatment schedule that significantly inhibited the hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase activity without affecting total blood cholesterol. At the dose of 10 mg/kg, lovastatin and pravastatin reduced by approximately 50% the lipopolysaccharide-induced leukocytes recruitment and the exudate MCP-1 production. In conclusion, statins, by inhibiting mevalonate-derived products, reduced both in vitro and in vivo the production of chemokines involved in leukocyte migration, and this effect is unrelated to their cholesterol-lowering action. (Lab Invest 2000, 80:1095-1100.
Eukaryotic E2Fs are conserved transcription factors playing crucial and antagonistic roles in several pathways related to cell division, DNA repair, and differentiation. In plants, these processes are strictly intermingled at the growing zone to produce postembryonic development in response to internal signals and environmental cues. Of the six AtE2F proteins found in Arabidopsis (Arabidopsis thaliana), only AtE2Fa and AtE2Fb have been clearly indicated as activators of E2F-responsive genes. AtE2Fa activity was shown to induce S phase and endoreduplication, whereas the function of AtE2Fb and the interrelationship between these two transcription factors was unclear. We have investigated the role played by the AtE2Fb gene during cell cycle and development performing in situ RNA hybridization, immunolocalization of the AtE2Fb protein in planta, and analysis of AtE2Fb promoter activity in transgenic plants. Overexpression of AtE2Fb in transgenic Arabidopsis plants led to striking modifications of the morphology of roots, cotyledons, and leaves that can be ascribed to stimulation of cell division. The accumulation of the AtE2Fb protein in these lines was paralleled by an increased expression of E2F-responsive G1/S and G2/M marker genes. These results suggest that AtE2Fa and AtE2Fb have specific expression patterns and play similar but distinct roles during cell cycle progression.The identification of various components of the plant cell cycle machinery has revealed remarkable similarities with the regulatory pathways found in animal cells, for which a key role is exerted by the E2F/DP family of transcription factors. The genome of the model plant Arabidopsis (Arabidopsis thaliana) contains eight genes of this family (six E2Fs and two DPs), whereas in mammalian cells 10 E2F/DP members have been discovered (eight E2Fs and two DPs; Attwooll et al., 2004;Christensen et al., 2005;Dimova and Dyson, 2005;Maiti et al., 2005). Most mammalian E2F proteins (E2F1-5) and three of the Arabidopsis members (AtE2Fa-c) show a similar domain organization, characterized by a highly conserved DNAbinding domain followed by a DP heterodimerization domain and a C-terminal transactivating domain, containing the pocket protein-binding region. The mammalian E2F6 lacks the carboxy-terminal transactivating region. Six mammalian E2Fs (E2F1-6) and three Arabidopsis E2F proteins (AtE2Fa-c) bind DNA by forming heterodimers with the distantly related DP proteins that contribute a second DNA-binding domain for binding to the consensus E2F cis-elements found in several E2F-responsive promoters. The remaining Arabidopsis E2Fs (AtE2Fd, e, and f/DEL2, 1, and 3) and the E2F7 and E2F8 proteins of mammalian cells only contain conserved duplicated DNA-binding domains. They cannot form heterodimers with DP proteins, but their duplicated DNA-binding domains allow autonomous binding to the consensus E2F sites (Mariconti et al
The conserved bifactorial endosperm box found in the promoter of wheat storage protein genes comprises two different cis elements that are thought to be involved in regulating endosperm-specific gene expression. Endosperm nuclear extracts contain binding activities. One is called ESBF-I, which binds to the endosperm motif (EM), and the other is called ESBF-II, which binds to the GCN4-like motif(GLM). Here, we present a functional analysis of the endosperm box of a low-molecular-weight glutenin gene found on the 1D1 chromosome of hexaploid wheat (LMWG-1D1) in transgenic tobacco plants. Our analysis demonstrates the necessity of the EM and GLM for endosperm-specific gene expression and suggests the presence in tobacco of functional counterparts of wheat ESBF-I and ESBF-II. Furthermore, we describe the isolation and characterization of cDNA clones encoding SPA, a seed-specific basic leucine zipper protein from wheat that can activate transcription from the GLMs of the -326-bp LMWG-1D1 promoter in both maize and tobacco leaf protoplasts. This activation is also partially dependent on the presence of functional EMs, suggesting interactions between SPA with ESBF-I-like activities.
Abstract-This study set out to clarify whether the inhibition of sterol or nonsterol derivatives arising from mevalonate biotransformation plays a major role in the in vivo anti-inflammatory action of statins. Hepatic synthesis of all these derivatives was inhibited in mice by administered statins, whereas squalestatin inhibited only sterol derivatives. Using a short-term treatment schedule, we found that statins reduced the hepatic activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase without affecting blood cholesterol. This treatment inhibited lipopolysaccharide-and carrageenan-induced pouch leukocyte recruitment and the exudate production of interleukin-6, monocyte chemotactic protein-1, and RANTES. Coadministration of mevalonate reversed the effect of statin on leukocyte recruitment. The inhibition of sterol synthesis by squalestatin did not have any anti-inflammatory effect, indicating that the biosynthesis of nonsterol compounds arising from mevalonate is crucial for the in vivo regulation of cytokine and chemokine production by statins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.