Metabolic syndrome comprises a cluster of diseases like hypertension, dyslipidemia, and insulin resistance, among others. Its treatment is based on lifestyle modification; however, this treatment often fails to improve metabolic syndrome indicators over the long term. In this work, sequences of some representative vegetable proteins were explored to find bioactive peptides with activity toward metabolic disorders of metabolic syndrome. Five proteins, i.e., legumin (chickpea), glutelin type A-2 (chickpea), glutelin type B-2 (rice), prolamin PPROL 17 (maize), and glutelin (rice) revealed a high potential to be effective against metabolic syndrome. We designed and evaluated in silico modifications to their amino acid sequence to release bioactive peptides after simulating gastrointestinal digestion (SGD). The approach presented here allows the design of proteins that could combat metabolic syndrome, for later production and study. In the future, these proteins can be used as functional foods.
Metabolic syndrome is a severe public health issue characterized by multiple metabolic disturbances. Current treatments prescribe a particular drug for each of them, producing multiple side effects. As a first step towards a more integral approach, we applied our recently described methodology to design single proteins, based in the Concanavalin B scaffold (1CNV), that contain several bioactive peptides (BPs), including antioxidant and lipid-lowering activities as well as inhibitors of dipeptidyl peptidase IV (DPPIV) and the angiotensin converting enzyme. Modified Concanavalin (CNV44), the designed protein that showed the best in silico properties, was expressed in high yields in E. coli and purified to homogeneity. After in vitro digestion with gastrointestinal enzymes, all the biological activities tested where higher in CNV44 when compared to the non-modified protein 1CNV, or to other previous reports. The results presented here represent the first in vitro evidence of a modified protein with the potential to treat metabolic syndrome and open the venue for the design of proteins to treat other non-communicable diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.