Positioning systems have gained paramount importance for many different productive sector; however, traditional systems such as Global Positioning System (GPS) have failed to offer accurate and scalable solutions for indoor positioning requirements. Nowadays, alternative solutions such as fingerprinting allow the recognition of the characteristic signature of a location based on RF signal acquisition. In this work, a machine learning (ML) approach has been considered in order to classify the RSSI information acquired by multiple scanning stations from TAG broadcasting messages. TinyML has been considered for this project, as it is a rapidly growing technological paradigm that aims to assist the design and implementation of ML mechanisms in resource-constrained embedded devices. Hence, this paper presents the design, implementation, and deployment of embedded devices capable of communicating and sending information to a central system that determines the location of objects in a defined environment. A neural network (deep learning) is trained and deployed on the edge, allowing the multiple external error factors that affect the accuracy of traditional position estimation algorithms to be considered. Edge Impulse is selected as the main platform for data standardization, pre-processing, model training, evaluation, and deployment. The final deployed system is capable of classifying real data from the installed TAGs, achieving a classification accuracy of 88%, which can be increased to 94% when a post-processing stage is implemented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.