Drug-decorated nanoparticles (DDNPs) have important medical applications. The current work combined Perturbation Theory with Machine Learning and Information Fusion (PTMLIF). Thus, PTMLIF models were proposed to predict the probability of nanoparticle–compound/drug complexes having antimalarial activity (against Plasmodium). The aim is to save experimental resources and time by using a virtual screening for DDNPs. The raw data was obtained by the fusion of experimental data for nanoparticles with compound chemical assays from the ChEMBL database. The inputs for the eight Machine Learning classifiers were transformed features of drugs/compounds and nanoparticles as perturbations of molecular descriptors in specific experimental conditions (experiment-centered features). The resulting dataset contains 107 input features and 249,992 examples. The best classification model was provided by Random Forest, with 27 selected features of drugs/compounds and nanoparticles in all experimental conditions considered. The high performance of the model was demonstrated by the mean Area Under the Receiver Operating Characteristics (AUC) in a test subset with a value of 0.9921 ± 0.000244 (10-fold cross-validation). The results demonstrated the power of information fusion of the experimental-centered features of drugs/compounds and nanoparticles for the prediction of nanoparticle–compound antimalarial activity. The scripts and dataset for this project are available in the open GitHub repository.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.