Transport of tracer particles is studied in a model of three-dimensional, resistive, pressure-gradient-driven plasma turbulence. It is shown that in this system transport is anomalous and cannot be described in the context of the standard diffusion paradigm. In particular, the probability density function (pdf) of the radial displacements of tracers is strongly non-Gaussian with algebraic decaying tails, and the moments of the tracer displacements exhibit superdiffusive scaling. To model these results we present a transport model with fractional derivatives in space and time. The model incorporates in a unified way nonlocal effects in space (i.e., non-Fickian transport), memory effects (i.e., non-Markovian transport), and non-Gaussian scaling. There is quantitative agreement between the turbulence transport calculations and the fractional diffusion model. In particular, the model reproduces the shape and space-time scaling of the pdf, and the superdiffusive scaling of moments.
The continuous time random walk (CTRW) is a natural generalization of the Brownian random walk that allows the incorporation of waiting time distributions ψ(t) and general jump distribution functions η(x). There are two well-known fluid limits of this model in the uncoupled case. For exponential decaying waiting times and Gaussian jump distribution functions the fluid limit leads to the diffusion equation. On the other hand, for algebraic decaying waiting times, ψ ∼ t −(1+β) , and algebraic decaying jump distributions, η ∼ x −(1+α) , corresponding to Lévy stable processes, the fluid limit leads to the fractional diffusion equation of order α in space and order β in time. However, these are two special cases of a wider class of models. Here we consider the CTRW for the most general Lévy stochastic processes in the Lévy-Khintchine representation for the jump distribution function and obtain an integro-differential equation describing the dynamics in the fluid limit. The resulting equation contains as special cases the regular and the fractional diffusion equations. As an application we consider the case of CTRWs with exponentially truncated Lévy jump distribution functions. In this case the fluid limit leads to a transport equation with exponentially truncated fractional derivatives which describes the interplay between memory, long jumps, and truncation effects in the intermediate asymptotic regime. The dynamics exhibits a transition from superdiffusion to subdiffusion with the crossover time scaling as τ c ∼ λ −α/β where 1/λ is the truncation length scale. The asymptotic behavior of the propagator (Green's function) of the truncated fractional equation exhibits a transition from algebraic decay for t τ c to stretched Gaussian decay for t τc.
Transport and mixing properties of Rossby waves in shear flow are studied using tools from Hamiltonian chaos theory. The destruction of barriers to transport is studied analytically, by using the resonance overlap criterion and the concept of separatrix reconnection, and numerically by using PoincarC sections. Attention is restricted to the case of symmetric velocity profiles with a single maximum; the Bickley jet with velocity profile sech' is considered in detail. Motivated by linear stability analysis and experimental results, a simple Hamiltonian model is proposed to study transport by waves in these shear flows. Chaotic transport, both for the general case and for the sech* profile, is investigated. The resonance overlap criterion and the concept of separatrix reconnection are used to obtain an estimate for the destruction of barriers to transport and the notion of banded chaos is introduced to characterize the transport that typically occurs in symmetric shear flows. Comparison between the analytical estimates for barrier destruction and the numerical results is given. The role of potential vorticity conservation in chaotic transport is discussed. An area preserving map, termed standard nontwist map, is obtained from the Hamiltonian model. It is shown that the map reproduces the transport properties and the separatrix reconnection observed in the Hamiltonian model. The conclusions reached are used to explain experimental results on transport and mixing by Rossby waves in rotating fluids.
Numerical evidence of nondiffusive transport in three-dimensional, resistive pressure-gradient-driven plasma turbulence is presented. It is shown that the probability density function (pdf) of tracer particles' radial displacements is strongly non-Gaussian and exhibits algebraic decaying tails. To model these results we propose a macroscopic transport model for the pdf based on the use of fractional derivatives in space and time that incorporate in a unified way space-time nonlocality (non-Fickian transport), non-Gaussianity, and nondiffusive scaling. The fractional diffusion model reproduces the shape and space-time scaling of the non-Gaussian pdf of turbulent transport calculations. The model also reproduces the observed superdiffusive scaling.
Most of the recent literature dealing with the modeling of financial assets assumes that the underlying dynamics of equity prices follow a jump process or a Lévy process. This is done to incorporate rare or extreme events not captured by Gaussian models. Of those financial models proposed, the most interesting include the CGMY, KoBoL and FMLS. All of these capture some of the most important characteristics of the dynamics of stock prices. In this article we show that for these particular Lévy processes, the prices of financial derivatives, such as European-style options, satisfy a fractional partial differential equation (FPDE). As an application, we use numerical techniques to price exotic options, in particular barrier options, by solving the corresponding FPDEs derived.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.