The relationship between chronic infection, antispirochetal immunity, and inflammation is unknown in Lyme neuroborreliosis. In the nonhuman primate model of Lyme neuroborreliosis, we measured spirochetal density in the nervous system and other tissues by polymerase chain reaction and correlated these values to anti-Borrelia burgdorferi antibody in the serum and cerebrospinal fluid, and to inflammation in tissues. Despite substantial presence of Borrelia burgdorferi, the causative agent of Lyme borreliosis, in the central nervous system, only minor inflammation was present there, though skeletal and cardiac muscle, which contained similar levels of spirochete, were highly inflamed. Anti-Borrelia burgdoferi antibody was present in the cerebrospinal fluid but was not selectively concentrated. All infected animals developed anti-Borrelia burgdorferi antibody in the serum, but increased amplitude of antibody was not predictive of higher levels of infection. These data demonstrate that Lyme neuroborreliosis is a persistent infection, that spirochetal presence is a necessary but not sufficient condition for inflammation, and that antibody measured in serum may not predict the severity of infection.
Lyme borreliosis is a multisystemic disease caused by infection with various genospecies of the spirochete Borrelia burgdorferi. The organs most often affected are the skin, joints, the heart, and the central and peripheral nervous systems. Multiple neurological complications can occur, including aseptic meningitis, encephalopathy, facial nerve palsy, radiculitis, myelitis, and peripheral neuropathy. To investigate spinal cord involvement in the nonhuman primate (NHP) model of Lyme borreliosis, we inoculated 25 adult Macaca mulatta with B. burgdorferi sensu strictu strains N40 by needle (N ¼ 9) or by tick (N ¼ 4) or 297 by needle (N ¼ 2), or with B. burgdorferi genospecies garinii strains Pbi (N ¼ 4), 793 (N ¼ 2), or Pli (N ¼ 4) by needle. Immunosuppression either transiently (TISP) or permanently (IS) was used to facilitate establishment of infection. Tissues and fluids were collected at necropsy 7-24 weeks later. Hematoxylin and eosin staining was used to study inflammation, and immunohistochemistry and digital image analysis to measure inflammation and localize spirochetes. The spirochetal load and C1q expression were measured by TaqMan RT-PCR. The results showed meningoradiculitis developed in only one of the 25 NHP's examined, TISP NHP 321 inoculated with B. garinii strain Pbi. Inflammation was localized to nerve roots, dorsal root ganglia, and leptomeninges but rarely to the spinal cord parenchyma itself. T cells and plasma cells were the predominant inflammatory cells. Significantly increased amounts of IgG, IgM, and C1q were found in inflamed spinal cord. Taqman RT-PCR found spirochetes in the spinal cord only in IS-NHP's, mostly in nerve roots and ganglia rather than in the cord parenchyma. C1q mRNA expression was significantly increased in inflamed spinal cord. This is the first comprehensive study of spinal cord involvement in Lyme borreliosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.