Most commercially available cochlear implants and hearing aids use microphones as sensors for capturing the external sound field. These microphones are in general located in an external element, which is also responsible for processing the sound signal. However, the presence of the external element is the cause of several problems such as discomfort, impossibility of being used during physical activities and sleeping, and social stigma. These limitations have driven studies with the goal of developing totally implantable hearing devices, and the design of an implantable sensor has been one of the main challenges to be overcome. Different designs of implantable sensors can be found in the literature and in some commercial implantable hearing aids, including different transduction mechanisms (capacitive, piezoelectric, electromagnetic, etc), configurations microphones, accelerometers, force sensor, etc) and locations (subcutaneous or middle ear). In this work, a detailed technical review of such designs is presented and a general classification is proposed. The technical characteristics of each sensors are presented and discussed in view of the main requirements for an implantable sensor for hearing devices, including sensitivity, internal noise, frequency bandwidth and energy consumption. The feasibility of implantation of each sensor is also evaluated and compared.
The dynamics of the human middle ear (ME) has been studied in the past using several computational and experimental approaches in order to observe the effect on hearing of different conditions, such as conductive disease, corrective surgery, or implantation of a middle ear prosthesis. Multibody (MB) models combine the analysis of flexible structures with rigid body dynamics, involving fewer degrees-of-freedom (DOF) than finite element (FE) models, but a more detailed description than traditional 1D lumped parameter (LP) models. This study describes the reduction of a reference FE model of the human middle ear to a MB model and compares the results obtained considering different levels of model simplification. All models are compared by means of the frequency response of the stapes velocity versus sound pressure at the tympanic membrane (TM), as well as the system natural frequencies and mode shapes. It can be seen that the flexibility of the ossicles has a limited impact on the system frequency response function (FRF) and modes, and the stiffness of the tendons and ligaments only plays a role when above certain levels. On the other hand, the restriction of the stapes footplate movement to a piston-like behavior can considerably affect the vibrational modes, while constraints to the incudomalleolar joint (IMJ) and incudostapedial joint (ISJ) can have a strong impact on the system FRF.
Conventional hearing devices, such as cochlear implants and hearing aids, use a microphone as a sensor for capturing the external sound field. Currently, the microphone is located in an external element, which is also responsible for processing the sound signal, but its presence is the cause of problems like discomfort, impossibility of being used during physical activities and sleeping, and social stigma. These limitations have driven studies with the goal of developing totally implantable hearing devices, and the design of an implantable sensor has been of the main issues to be overcome. Different designs of implantable sensors can be found in the literature and on some commercial implantable hearing aids, including different transduction mechanisms (capacitive, piezoelectric, electromagnetic, etc.), configurations (microphones, accelerometers, force sensor, etc.), and locations (subcutaneous or located in the middle ear). In this work, a detail review of such designs is presented and a general classification is proposed. The technical characteristics of the sensors are presented and discussed in view of the main requirements for an implantable sensor for hearing devices, including sensitivity, internal noise, frequency bandwidth, and energy consumption. The implantation feasibility of each sensor is also evaluated and compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.