In this work, the task of document image classification is dealt with, particularly in the case of pre-printed forms, where a large part of the document can be filled-in with the result of a potentially very different image. A method for the selection of discriminative local features is presented and tested along with two different classification algorithms. The first one is an incremental version of the method proposed in (Arlandis et al., 2009), based on similarity searching around a set anchor points, and the second one is based on a direct voting scheme ((Arlandis et al., 2011)). Experiments on a document database consisting of real office documents with a very high variability, as well as on the NIST SD6 database, are presented. A confidence measure intended to reject unknown documents (those that have not been indexed in advance as a given document class) is also proposed and tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.