A weak halogen bond, together with charge transfer from a noble gas to Cl2, characterizes the intermolecular interaction between a noble gas atom and Cl2 in a collinear configuration.
Molecular‐beam scattering experiments and theoretical calculations prove the nature, strength, and selectivity of the halogen bonds (XB) in the interaction of halogen molecules with the series of noble gas (Ng) atoms. The XB, accompanied by charge transfer from the Ng to the halogen, is shown to take place in, and measurably stabilize, the collinear conformation of the adducts, which thus becomes (in contrast to what happens for other Ng‐molecule systems) approximately as bound as the T‐shaped form. It is also shown how and why XB is inhibited when the halogen molecule is in the 3Πu excited state. A general potential formulation fitting the experimental observables, based on few physically essential parameters, is proposed to describe the interaction accurately and is validated by ab initio computations.
We studied the puzzling stability and short distances predicted by theory for helium adducts with some highly polar molecules, such as BeO or AuF. On the basis of high-level quantum-chemical calculations, we carried out a detailed analysis of the charge displacement occurring upon adduct formation. For the first time we have unambiguously ascertained that helium is able not only to donate electron density, but also, unexpectedly, to accept electron density in the formation of weakly bound adducts with highly polar substrates. The presence of a large dipole moment induces a large electric field at He, which lowers its 2p orbital energy and enables receipt of π electron density. These findings offer unprecedented important clues toward the design and synthesis of stable helium compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.