Background: Redox active metal cations, such as Cu2 +, have been related to induce amyloid plaques formation and oxidative stress, which are two of the key events in the development of Alzheimer’s disease (AD) and others metal promoted neurodegenerative diseases. In these oxidative events, standard reduction potential (SRP) is an important property especially relevant in the reactive oxygen species formation. Objective: The SRP is not usually considered for the selection of drug candidates in anti-AD treatments. In this work, we present a computational protocol for the selection of multifunctional ligands with suitable metal chelating, pharmacokinetics, and redox properties. Methods: The filtering process is based on quantum chemical calculations and the use of in silico tools. Calculations of SRP were performed by using the M06-2X density functional and the isodesmic approach. Then, a virtual screening technique (VS) was used for similar structure search. Results: Protocol application allowed the assessment of chelating, drug likeness, and redox properties of copper ligands. Those molecules showing the best features were selected as molecular scaffolds for a VS procedure in order to obtain related compounds. After applying this process, we present a list of candidates with suitable properties to prevent the redox reactions mediated by copper(II) ion. Conclusion: The protocol incorporates SRP in the filtering stage and can be effectively used to obtain a set of potential drug candidates for AD treatments.
Alzheimer’s disease (AD) is the most common form of dementia, affecting millions of people around the world. Even though the causes of AD are not completely understood due to its multifactorial nature, some neuropathological hallmarks of its development have been related to the high concentration of some metal cations. These roles include the participation of these metal cations in the production of reactive oxygen species, which have been involved in neuronal damage. In order to avoid the increment in the oxidative stress, multifunctional ligands used to coordinate these metal cations have been proposed as a possible treatment to AD. In this review, we present the recent advances in experimental and computational works aiming to understand the role of two redox active and essential transition-metal cations (Cu and Fe) and one nonbiological metal (Al) and the recent proposals on the development of multifunctional ligands to stop or revert the damaging effects promoted by these metal cations.
Molecular phenomena involving electron transfer and reduction/oxidation processes are of the utmost importance in chemistry. However, accurate computational calculations of standard reduction potentials (SRPs) for transition metal complexes are still challenging. For this reason, some computational strategies have been proposed in order to overcome the main limitations in SRP calculations for copper complexes. However, these strategies are limited to particular coordination spheres and do not represent a general methodology. In this work, we present standard reduction potential calculations for copper complexes in aqueous solution covering a wide range of coordination spheres. These calculations were performed using the M06-2X density functional, and by employing the direct and isodesmic approaches. Result analysis reveals that values obtained with the use of the isodesmic method are in better agreement with experimental values than those obtained from the direct method (mean unsigned error 0.39 V with the direct and 0.08 V with the isodesmic method). This approach provides values with errors comparable to the experimental uncertainty due to the proper cancellation of computational errors. These results strongly suggest the isodesmic approach as an adequate methodology for the calculation of SRPs for copper complexes with diverse coordination spheres. Graphical Abstract Comparison between direct and isodesmic methods in the calculation of standard reduction potentials for copper complexes using DFT methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.