A sustainable route to ketones is described where stearone is produced via ketonic decarboxylation of stearic acid mediated by solid base catalysts in yields of up to 97%, at 250 °C. A range of Mg/Al layered double hydroxide (LDH) and mixed metal oxide (MMO) solid base catalysts were prepared with Mg/Al ratios of between 2 and 6 via two synthetic routes, co-precipitation and co-hydration, with each material tested for their catalytic performance. For a given Mg/Al ratio, the LDH and MMO materials showed similar reactivity, with no correlation to the method of preparation. The presence of co-produced oxide phases in the co-hydration catalysts had negligible impact on reactivity.
Transforming waste materials into added-value products is critical for a sustainable and circular economy. Here, Mg/Fe layered double hydroxide (LDH) materials, with a Mg2+:Fe3+ ratio of 2, were successfully synthesized via the co-precipitation method from a dissolved acid mine drainage precipitate waste “ochre”, which is normally put to landfill. The prepared LDH materials were tested as a heterogeneous base catalyst to promote the production of the ketone, 12-tricosanone, from lauric acid, a component of plant oils, through a ketonic decarboxylation reaction, giving a circular economy route to catalysts for sustainable ketone production. The highest yield of the ketone observed was 80%.
Ketonic decarboxylation has gained significant attention in recent years as a pathway to reduce the oxygen content within biomass-derived oils, and to produce sustainable ketones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.