The development and validation of reliable in vitro methods alternative to conventional in vivo studies in experimental animals is a well-recognised priority in the fields of pharmaco-toxicology and food research. Conventional studies based on two-dimensional (2-D) cell monolayers have demonstrated their significant limitations: the chemically and spatially defined three-dimensional (3-D) network of extracellular matrix components, cell-to-cell and cell-to-matrix interactions that governs differentiation, proliferation and function of cells in vivo is, in fact, lost under the simplified 2-D condition. Being able to reproduce specific tissue-like structures and to mimic functions and responses of real tissues in a way that is more physiologically relevant than what can be achieved through traditional 2-D cell monolayers, 3-D cell culture represents a potential bridge to cover the gap between animal models and human studies. This article addresses the significance and the potential of 3-D in vitro systems to improve the predictive value of cell-based assays for safety and risk assessment studies and for new drugs development and testing. The crucial role of tissue engineering and of the new microscale technologies for improving and optimising these models, as well as the necessity of developing new protocols and analytical methods for their full exploitation, will be also discussed.
The soy isoflavone genistein targets adipose tissue and elicits physiological effects that may vary based on dietary intake. We hypothesized that the adipose effects of genistein are dose and gender dependent. Four-week-old C57BL/6 male and female mice received daily oral doses of genistein (50-200,000 microg/kg.d) or 17beta-estradiol (E2) (5 microg/kg.d) for 15 d or a diet containing 800 ppm genistein. Genistein increased epididymal and renal fat pad and adipocyte size at doses up to 50,000 microg/kg.d or at 800 ppm in the diet in males but not in females. The alteration in adipocity correlated with changes in peripheral insulin resistance. These treatments increased genistein serum concentrations from 35+/-6 to 103+/-26 nM 12 h after treatment and lowered plasma triglycerides and cholesterol levels. The 200,000 microg/kg.d genistein dose decreased adipose tissue weight similarly to E2. This genistein dose down-regulated estrogen receptor (beta more than alpha) and progesterone receptor expression and induced estrogen-dependent adipose differentiation factors; it did not change expression of the minimal consensus estrogen-responsive element in ERE-tK-LUC mice, which was positively modulated in other tissues (e.g. the lung). E2 down-regulated almost all examined adipogenic factors. Gene microarray analysis identified factors in fat metabolism and obesity-related phenotypes differentially regulated by low and high doses of genistein, uncovering its adipogenic and antiadipogenic actions. The lower dose induced the phospholipase A2 group 7 and the phospholipid transfer protein genes; the 200,000 microg/kg.d dose inhibited them. The antiadipogenic action of genistein and down-regulation of adipogenic genes required the expression of ERbeta. In conclusion, nutritional doses of genistein are adipogenic in a gender-specific manner, whereas pharmacological doses inhibited adipose deposition.
Patients undergoing long-term hemodialysis (HD) exhibit increased levels of oxidative stress, likely contributing to the increased rate of cardiovascular disease. The present study represents a critical evaluation of some of the most widely used oxidative indicators, as applied to the monitoring of hemodialysis-associated oxidative stress. Total plasma antioxidant capacity was determined by two independent procedures, the total antioxidant status (TAS) and the ferric reducing ability of plasma (FRAP) methods. Plasma lipid peroxidation was assessed by determining the peroxidation products malonaldehyde and 4-hydroxynonenal (MDA-4HNE) as well as lipid hydroperoxides ("Fox-2" and "d-ROMs" methods). Total plasma thiols and plasma alpha-tocopherol were also determined. MDA-4HNE levels were higher in HD patients and decreased following HD, possibly due to passive diffusion across dialysis filters. d-ROMs were also higher in HD patients but exhibited a further increase following the dialysis procedure. Serum alpha-tocopherol did not show any significant differences. Plasma thiols were lower in HD patients and were restored following HD. Plasma total antioxidant capacity determined with either method was unexpectedly higher in HD patients compared to controls, and decreased following HD. These data indicate that, of the biomarkers studied, d-ROMs level is the one more accurately reflecting the oxidative alterations taking place in HD patients, while determination of MDA-4HNE fails to detect oxidation occurring during the HD sessions. In addition, our findings point out that the determination of total antioxidant capacity in HD patients is severely affected by the concomitant fluctuations in plasma urate levels and therefore needs careful interpretation.
Nineteen patients with juvenile nasopharyngeal angiofibroma (JNA) were surgically treated with different techniques from January 1968 through December 1985. Two patients had undergone a previous operation at another hospital; all patients were males (mean age 15.4), and the most common symptom was nasal obstruction (84.2%). Lateral extension into the pterygomaxillary fossa occurred in 14 patients (73.6%), and 2 also had intracranial invasion (10.5%). In five cases, the tumor's cytosol was analyzed for hormonal receptors. Negative values for estrogen and progesterone receptors were obtained, although the content of dehydrotestosterone receptors was highly positive. These results tend to support the hypothesis of JNA's androgen-dependence. The authors emphasize the need of a preoperative staging classification based on clinicoradiological data in selecting the most adequate surgical approach. Tumors with lateral extension into the pterygomaxillary fossa can be easily removed through a midface degloving; large involvement of the infratemporal fossa requires, also, a transzygomatic dissection. In JNAs with intracranial extension a combined intracranial-extracranial approach is advisable.
Mounting evidence indicates that the lysosome-autophagy pathway plays a critical role in iron release from ferritin, the main iron storage cellular protein, hence in the distribution of iron to the cells. The recent identification of nuclear receptor co-activator 4 as the receptor for ferritin delivery to selective autophagy sheds further light on the understanding of the mechanisms underlying this pathway. The emerging view is that iron release from ferritin through the lysosomes is a general mechanism in normal and tumour cells of different tissue origins, but it has not yet been investigated in brain cells. Defects in the lysosome-autophagy pathway are often involved in the pathogenesis of neurodegenerative disorders, and brain iron homeostasis disruption is a hallmark of many of these diseases. However, in most cases, it has not been established whether iron dysregulation is directly involved in the pathogenesis of the diseases or if it is a secondary effect derived from other pathogenic mechanisms. The recent evidence of the crucial involvement of autophagy in cellular iron handling offers new perspectives about the role of iron in neurodegeneration, suggesting that autophagy dysregulation could cause iron dyshomeostasis. In this review, we recapitulate our current knowledge on the routes through which iron is released from ferritin, focusing on the most recent advances. We summarise the current evidence concerning lysosome-autophagy pathway dysfunctions and those of iron metabolism and discuss their potential interconnections in several neurodegenerative disorders, such as Alzheimer's, Parkinson's and Huntington's diseases; amyotrophic lateral sclerosis; and frontotemporal lobar dementia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.