Zirconium nitride (ZrN) is a transition metal nitride of great interest due to its excellent physical and chemical properties. This study aims to synthesize ZrN fine powders by a facile and low‐cost urea route that avoids the use of any solvent. ZrCl4 and urea mixtures were heat‐treated at up to 1600˚C in nitrogen gas. The products were characterized by X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, energy‐dispersive X‐ray spectroscopy, and thermogravimetric analysis. The effects of different processing parameters such as metal to urea molar ratio, heat treatment temperature, and dwelling time on the product phase and stoichiometry were studied to understand the synthesis method. In addition, synthesized ZrN powder was consolidated into near fully dense single‐phase bulk ceramic with a homemade flash sintering setup. A constant DC electrical field of ∼80 V/cm and pressure of ∼14 MPa at room temperature triggered flash sintering without pre‐heating, and the entire process finished in 200 s. The composition, microstructure, density, hardness, and oxidation properties of the sintered pellet were also characterized.
Flash sintering is an electrical field-assisted densification technique that requires passing a current through a ceramic powder compact. Pressure-assisted flash sintering of commercially available Zirconium Nitride (ZrN) powders has been demonstrated. Near fully dense samples can be obtained within a short period of time. The influences of parameters such as electrical field strength, voltage ramping rate, current limit, external pressure, pre-heating, and holding time on the onset of the flash event were investigated. Some post-flash sintered samples were subjected to the same condition to observe if the material would experience repeated flash. In addition, material properties such as density and hardness were measured and correlated with SEM and XRD. Implications of the observations on underlying flash sintering mechanism will also be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.