The mechanism by which platelet-derived growth factor (PDGF) regulates vascular smooth muscle cell (SMC) DNA synthesis is unknown, but may involve isoprenoid intermediates of the cholesterol biosynthetic pathway. Inhibition of isoprenoid synthesis with the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor, simvastatin (Sim, 1-10 M), inhibited PDGF-induced SMC DNA synthesis by >95%, retinoblastoma gene product hyperphosphorylation by 90%, and cyclin-dependent kinases (cdk)-2, -4, and -6 activity by 80 ؎ 5, 50 ؎ 3, and 48 ؎ 3%, respectively. This correlated with a 20-fold increase in p27Kip1 without changes in p16, p21 Waf1 , or p53 levels compared with PDGF alone. Since Ras and Rho require isoprenoid modification for membrane localization and are implicated in cell cycle regulation, we investigated the effects of Sim on Ras and Rho. Up-regulation of p27Kip1 and inhibition of Rho but not Ras membrane translocation by Sim were reversed by geranylgeranylpyrophosphate, but not farnesylpyrophosphate. Indeed, inhibition of Rho by Clostridium botulinum C3 transferase or overexpression of dominant-negative N19RhoA mutant increased p27Kip1 and inhibited retinoblastoma hyperphosphorylation. In contrast, activation of Rho by Escherichia coli cytotoxic necrotizing factor-1 decreased p27Kip1 and increased SMC DNA synthesis. These findings indicate that the down-regulation of p27Kip1 by Rho GTPase mediates PDGF-induced SMC DNA synthesis and suggest a novel direct effect of 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors on the vascular wall.
Background-Salicylates may have direct vascular effects by mechanisms that are independent of platelet inhibition. Methods and Results-We investigated the effect of salicylates on vascular smooth muscle cell (SMC) proliferation in response to platelet-derived growth factor (PDGF) in vitro. Salicylate concentrations of 5 and 10 mmol/L inhibited serum-or PDGF-induced SMC cell count and [ 3 H]thymidine incorporation by 62% and 81%, respectively. There was no evidence of cellular toxicity or apoptosis as determined by trypan blue exclusion and FACS analyses. Because cell cycle progression is regulated by hyperphosphorylation of the retinoblastoma (Rb) protein, we examined the effects of salicylate on Rb hyperphosphorylation. Treatment with salicylate, but not indomethacin, inhibited nuclear factor-B activation and completely abolished Rb hyperphosphorylation in PDGF-treated SMCs. This effect was associated with a decrease in cyclin-dependent kinase (Cdk)-2 and, to a lesser extent, Cdk-6, but not Cdk-4 activity, without changes in Cdk-2, -4, and -6 and cyclin D and E protein levels. Because Cdk-2 activity is regulated by the Cdk inhibitors p21
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.