The menisci are frequently injured due to both degeneration and traumatic tearing. It has been suggested that the success of a meniscal replacement is dependent on several factors, one of which is the secure fixation and firm attachment of the replacement to the tibial plateau. Therefore, the objectives of the current study were to (1) determine the failure properties of the meniscal horn attachments, and (2) determine the strain distribution over their surfaces. Eight bovine knee joints were used to study the mechanical response of the meniscal attachments. Three meniscal attachments from one knee of each animal were tested in uniaxial tension at 2%/s to determine the load deformation response. During the tests, the samples were marked and local strain distributions were determined with a video extensometer. The linear modulus of the medial anterior attachment (1547134 MPa) was significantly less than both the medial posterior (2487179 MPa, p ¼ 0.0111) and the lateral anterior attachment (2817214 MPa, p ¼ 0.0007). Likewise, the ultimate strain for the medial anterior attachments (13.578.8%) was significantly less than the medial posterior (23713%, po0.0001) and the lateral anterior attachment (20.3711.1%, p ¼ 0.0033). There were no significant differences in the structural properties or ultimate stress between the meniscal attachments (p40.05). No significant differences in ultimate strain or moduli across the surface of the attachments were noted. Based on the data obtained, a meniscal replacement would need different moduli for each of the different attachments. However, the attachments appear to be homogeneous. r
Meniscectomies have been shown to lead to osteoarthritis and the success of meniscal replacements remains questionable. It has been suggested that the success of a meniscal replacement is dependent on several factors, one of which is the secure fixation and firm attachment of the replacement to the tibial plateau at the horn locations. To aid in the development of meniscal replacements, the objectives of the current study were to determine the time-dependent and failure properties of human meniscal attachments. In contrast to the time-dependent tests, during uniaxial failure testing a charge-coupled video camera was used to document the local strain and linear modulus distribution across the surface of the attachments. The lateral attachments were statistically smaller in cross-sectional area and longer than the medial attachments. The anterior attachments were statistically longer and had a smaller cross-sectional area than the posterior attachments. From the stress relaxation tests, the load and stress relaxation rates of the medial anterior attachment were statistically greater than the medial posterior attachment. There were no significant differences in the creep, structural properties or the ultimate stress between the different attachments. Ultimate strain varied between attachments as well as along the length of the attachment. Ultimate strain in the meniscus region (10.4±6.9%) and midsubstance region (12.7±16.4%) was smaller than the bony insertion region (32.2±21.5%). The lateral and anterior attachments were also found to have statistically greater strain than the medial and posterior attachments, respectively. The linear modulus was statistically weaker in the bony insertion region (69.7±33.7 MPa) compared to the meniscus region (153±123 MPa) and mid-substance region (195±121 MPa). Overall the anterior attachments (169±130 MPa) were also found to be statistically stronger than the posterior attachments (90.8±64.9 MPa). These results can be used to help design tissue engineered replacement menisci and their insertions and show the differences in material properties between attachment as well as within an attachment.
Abstract-Little quantitative data is available on the structure of meniscal attachments. Therefore, as an aid to designing meniscal replacements as well as a possible explanation for mechanical behavior, this study was designed to further the knowledge of the microstructure and biochemistry of native meniscal attachments. Bovine medial meniscal attachments (the external ligamentous portion as well as the transition zones at the bony insertion) were removed and prepared for microstructural evaluation. After embedding in paraffin, the samples were sliced on a microtome and stained for quantitative analysis. The anterior and posterior insertion sites are known to contain three zones: subchondral bone, calcified fibrocartilage, and uncalcified fibrocartilage. Additionally, others have shown that the anterior insertion site contains a ligamentous zone. The insertion zones were further divided into proximal, middle, and distal zones. The posterior attachment's insertion site had a significantly greater thickness of interdigitations, subchondral bone, uncalcified fibrocartilage, and calcified fibrocartilage zone thickness compared to the anterior attachment insertion. The anterior attachment's insertion had the greatest GAG fraction in each zone when compared to the posterior attachment's insertion. GAG fraction decreased from the meniscus to the subchondral bone. Both GAG fraction and normalized thickness varied within a given zone, decreasing from the distal to proximal regions in both the anterior and posterior attachments' insertion zones. Crimp frequency of the collagen fibrils in the external ligamentous portion of the tissue was homogeneous along the length. The findings from this study agree with previously published material property data on the medial meniscal attachments, and could be used in the future to design methods of attachment for tissue engineered replacement menisci.
Meniscal attachments are ligamentous tissues anchoring the menisci to the underlying subchondral bone. Currently little is known about the behavior of meniscal attachments, with only a few studies quantitatively documenting their properties. The objective of this study was to quantify and compare the tensile mechanical properties of human meniscal attachments in the transverse direction, curve fit experimental Cauchy stress-stretch data to evaluate the hyperelastic behavior, and couple those results with previously obtained longitudinal data to generate a more complete constitutive model. Meniscal attachment specimens were tested using a uniaxial tension test with the collagen fibers oriented perpendicular to the loading axis. Tests were run until failure and loadoptical displacement data was recorded for each test. The medial posterior attachment was shown to have a significantly greater elastic modulus (5.38±0.77 MPa) and ultimate stress (1.73±0.32 MPa) when compared to the other three attachments. The Mooney-Rivlin material model was selected as the best fit for the transverse data and used in conjunction with the longitudinal data. A novel computational approach to determining the transition point between the toe and linear regions is presented for the hyperelastic stress stretch curves. Results from piece-wise non-linear longitudinal curve fitting correlate well with previous linear elastic and SEM findings. These data can be used to advance the design of meniscal replacements and improve knee joint finite element models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.