Nowadays, social networks have become in a communication medium widely used to disseminate any type of information. In particular, the shared information in social networks usually includes a considerable number of traffic incidents reports of specific cities. In light of this, specialized social networks have emerged for detecting and disseminating traffic incidents, differentiating from generic social networks in which a wide variety of topics are communicated. In this context, Twitter is a case in point of a generic social network in which its users often share information about traffic incidents, while Waze is a social network specialized in traffic. In this paper we present a comparative study between Waze and an intelligent approach that detects traffic incidents by analyzing publications shared in Twitter. The comparative study was carried out considering Ciudad Autónoma de Buenos Aires (CABA), Argentina, as the region of interest. The results of this work suggest that both social networks should be considered as complementary sources of information. This conclusion is based on the fact that the proportion of mutual detections, i.e. traffic incidents detected by both approaches, was considerably low since it did not exceed 6% of the cases. Moreover, the results do not show that any of the approaches tend to anticipate in time to the other one in the detection of traffic incidents.Resumen Hoy en día, las redes sociales se han convertido en un medio de comunicación ampliamente utilizado para divulgar todo tipo de información. En particular, entre la información que es compartida se suelen incluir reportes de incidentes de tránsito de ciudades específicas. En vista de esto, aparte de las redes sociales genéricas en donde se comunican una amplia variedad de temas, han surgido redes sociales especializadas en la detección y divulgación de incidentes de tránsito. En este contexto, Twitter es un ejemplo de red social genérica en donde sus usuarios suelen informar incidentes de tránsito, mientras que Waze es una red social especializada en tránsito. En este artículo presentamos un estudio comparativo entre Waze y un enfoque inteligente que detecta incidentes de tránsito a partir del análisis de publicaciones compartidas en Twitter. El estudio comparativo fue realizado considerando a la Ciudad Autónoma de Buenos Aires (CABA), Argentina, como región de interés. Los resultados de este trabajo sugieren que ambos enfoques deberían ser considerados como fuentes de información complementarias. Esta conclusión se fundamenta en que la proporción de detecciones mutuas, es decir incidentes de transito detectados por ambos enfoques, resultó ser considerablemente baja no superando el 6% de los casos. Además, los resultados no evidencian que alguno de los enfoques tienda a anticipar temporalmente a su similar en la detección de incidentes.
En los últimos años, en combinación con los avances tecnológicos han surgido nuevos paradigmas de interacción con el usuario. Esto ha motivado a la industria a la creación de dispositivos de Interfaz Natural de Usuario (NUI, del inglés Natural User Interface) cada vez más potentes y accesibles. En particular, las cámaras de profundidad han alcanzado grandes niveles de adopción por parte de los usuarios. Entre estos dispositivos se destacan la Microsoft Kinect, la Intel RealSense y el Leap Motion Controller. Este tipo de dispositivos facilitan la adquisición de datos en el Reconocimiento de Actividades Humanas (HAR, del inglés Human Activity Recognition). HAR es un área que tiene por objetivo la identificación automática, dentro de secuencias de imágenes, de actividades realizadas por seres humanos. Entre los diferentes tipos de actividades humanas se encuentran los gestos manuales, es decir, aquellos realizados con las manos. Los gestos manuales pueden ser estáticos o dinámicos, según si presentan movimiento en las secuencias de imágenes. El reconocimiento de gestos manuales permite a los desarrolladores de sistemas de Interacción Humano-Computadora (HCI, del inglés Human-Computer Interaction) crear experiencias e interacciones más inmersivas, naturales e intuitivas. Sin embargo, esta tarea no resulta sencilla. Es por ello que, en la academia se ha abordado esta problemática con el uso de técnicas de aprendizaje de máquina. Tras el análisis del estado del arte actual, se ha identificado que la gran mayoría de los enfoques propuestos no contemplan el reconocimiento de los gestos estáticos y los dinámicos en forma simultánea (enfoques híbridos). Es decir, los enfoques están destinados a reconocer un solo tipo de gestos. Además, dado el contexto de sistemas HCI reales debe tenerse en cuenta también el costo computacional y el consumo de recursos de estos enfoques, con lo cual los enfoques deberían ser livianos. Por otra parte, casi la totalidad de los enfoques presentes en el estado del arte abordan la problemática ubicando las cámaras frente a los usuarios (perspectiva de segunda persona) y no desde la perspectiva de primera persona (FPV, del inglés First-Person View), en la que el usuario posee un dispositivo colocado sobre sí mismo. Esto puede asociarse con que recién en los últimos años han surgido dispositivos relativamente ergonómicos (pequeños, de peso ligero) que permitan considerar una perspectiva FPV viable. En este contexto, en la presente tesis se propone un enfoque liviano para el reconocimiento de gestos híbridos con cámaras de profundidad teniendo en cuenta la perspectiva FPV. El enfoque propuesto consta de 3 grandes componentes. En primer lugar, el de Adquisición de Datos, en el cual se define el dispositivo a utilizar y se recopilan las imágenes y la información de profundidad que es normalizada al rango de valores de 0 a 255 (escala de los canales RGB). En segundo lugar, el de Preprocesamiento, el cual tiene por objetivo hacer que dos secuencias de imágenes con variaciones temporales sean comparables. Para ello, se aplican técnicas de remuestreo y reducción de resolución. Además, en este componente se computa el flujo óptico determinado por las secuencias de imágenes a color que se poseen. En particular, se utiliza el flujo óptico como un nuevo canal de información dadas sus ventajas en lo que respecta a un análisis espacio-temporal de los videos. En tercer lugar, con las secuencias muestreadas y con la información de flujo óptico, se procede al componente Modelo de Aprendizaje Profundo, donde se aplican técnicas de aprendizaje profundo que permiten abordar las etapas de extracción de características y de clasificación. Particularmente, se propone una arquitectura de red convolucional densamente conectada con soporte multi-modal. Cabe destacar que, la fusión de las modalidades no es en etapa temprana ni tardía sino dentro del mismo modelo. De esta manera, se obtiene un modelo end-to-end que obtiene beneficios de los canales de información en forma separada y también conjunta. Los experimentos realizados han mostrado resultados muy alentadores (alcanzando un 90% de exactitud) indicando que la elección de este tipo de arquitecturas permite obtener una gran eficiencia de parámetros así como también de tiempos de predicción. Cabe resaltar que, las pruebas son realizadas sobre un conjunto de datos relevante del área. En base a ello, se analiza el desempeño de la presente propuesta en relación a diferentes escenarios como con variación de iluminación o movimiento de cámara, diferentes tipos de gestos, sensibilidad o sesgo por personas, entre otros.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.