This paper presents an experimental and numerical study of the mechanical behaviour of SAE 1045 steel sheet specimens during the conventional tensile test. Due to the complex stress state that develops at the neck for high levels of axial deformation, an experimental-numerical methodology is proposed in order to derive the elastic and hardening parameters which characterize the material response. Such methodology is essentially an extension to sheet samples of the well established procedure used for cylindrical ones. The simulation of the deformation process during the whole test is performed with a finite element large strain elastoplasticity-based formulation. Finally, the experimental validation of the obtained numerical results allows to assess the performance of the proposed methodology for the 3D analysis of sheet specimens and, in addition, to discuss the range of applicability of plane stress conditions.
The mechanical properties of aortic wall, both healthy and pathological, are needed in order to develop and improve diagnostic and interventional criteria, and for the development of mechanical models to assess arterial integrity. This study focuses on the mechanical behaviour and rupture conditions of the human ascending aorta and its relationship with age and pathologies. Fresh ascending aortic specimens harvested from 23 healthy donors, 12 patients with bicuspid aortic valve (BAV) and 14 with aneurysm were tensile-tested in vitro under physiological conditions. Tensile strength, stretch at failure and elbow stress were measured. The obtained results showed that age causes a major reduction in the mechanical parameters of healthy ascending aortic tissue, and that no significant differences are found between the mechanical strength of aneurysmal or BAV aortic specimens and the corresponding age-matched control group. The physiological level of the stress in the circumferential direction was also computed to assess the physiological operation range of healthy and diseased ascending aortas. The mean physiological wall stress acting on pathologic aortas was found to be far from rupture, with factors of safety (defined as the ratio of tensile strength to the mean wall stress) larger than six. In contrast, the physiological operation of pathologic vessels lays in the stiff part of the response curve, losing part of its function of damping the pressure waves from the heart.
This paper is focused on the numerical and experimental analyses of the collapse of a liquid column. The measurements of the interface position in a set of experiments carried out with shampoo and water for two different initial column aspect ratios are presented together with the corresponding numerical predictions. The experimental procedure was found to provide acceptable recurrence in the observation of the interface evolution. Basic models describing some of the relevant physical aspects, e.g. wall friction and turbulence, are included in the simulations. Numerical experiments are conducted to evaluate the influence of the parameters involved in the modeling by comparing the results with the data from the measurements. The numerical predictions reasonably describe the physical trends.
This paper presents an experimental and numerical characterization of ductile damage evolution in steels subjected to large plastic deformations. To this end, a set of tensile tests combining load-unload cycles is firstly carried out in order to evaluate the deterioration exhibited by the Young's modulus for increasing levels of plastic deformation. This task allows, in turn, to derive the characteristic parameters involved in a well-established evolution equation for the isotropic damage variable. All these material parameters are the basic data to be considered in the simulations that are performed afterwards: the analysis of the tensile test is mainly aimed at assessing the proposed characterization while the modelling of the flattening process of a cylinder is considered to discuss the possibilities and limitations of the constitutive model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.