The relationship between lithic technology, learning and language is a topic of growing interest in human evolution studies, and has therefore been the subject of numerous scientific papers in recent years. To evaluate the role of language in the social transmission of lithic technology, we designed and developed an experimental protocol through which we compared the acquisition of knapping skills in thirty non-experts in the early stages of learning, by means of three mechanisms of social transmission: imitation-emulation, gestural communication, and verbal communication. All the apprentice knappers carried out the experimental task with blanks that were equal in shape and size, and were requested to replicate what the expert knapper was doing: the alternating method, a sufficiently simple, but systematic technique for detaching flakes from a core. We analysed each participant’s actions, including those of the master knapper, the final products (flakes and cores), and the knapping sequences, by analysing the refits. Our results show that the apprentices improved their knapping skills in teaching conditions -both gestural and verbal communication-, and specially through the latter. In conclusion, our study supports the hypothesis of co-evolution between lithic technology and social learning, which could have favoured the emergence of verbal language.
Knowing to what extent lithic cores have been reduced through knapping is an important step toward understanding the technological variability of lithic assemblages and disentangling the formation processes of archaeological assemblages. In addition, it is a good complement to more developed studies of reduction intensity in retouched tools, and can provide information on raw material management or site occupation dynamics. This paper presents a new methodology for estimating the intensity of reduction in cores and tools on cobbles, the Volumetric Reconstruction Method (VRM). This method is based on a correction of the dimensions (length, width, and thickness) of each core from an assemblage. The mean values of thickness and platform thickness of the assemblage's flakes are used as corrections for the cores' original dimensions, after its diacritic analysis. Then, based on these new dimensions, the volume or mass of the original blank are reconstructed using the ellipsoid volume formula. The accuracy of this method was experimentally tested, reproducing a variety of possible archaeological scenarios. The experimental results demonstrate a high inferential potential of the VRM, both in estimating the original volume or mass of the original blanks, and in inferring the individual percentage of reduction for each core. The results of random resampling demonstrate the applicability of VRM to non size-biased archaeological contexts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.