The energy decomposition analysis (EDA) is a powerful method for a quantitative interpretation of chemical bonds in terms of three major expressions. The instantaneous interaction energy ΔEint between two fragments A and B in a molecule A–B is partitioned in three terms, namely, (1) the quasiclassical electrostatic interaction ΔEelstat between the fragments, (2) the repulsive exchange (Pauli) interaction ΔEPauli between electrons of the two fragments having the same spin, and (3) the orbital (covalent) interaction ΔEorb, which comes from the orbital relaxation and the orbital mixing between the fragments. The latter term can be decomposed into contributions of orbitals with different symmetry, which makes it possible to distinguish between σ, π, and δ bonding. After a short introduction into the theoretical background of the EDA, we present illustrative examples of main group and transition metal chemistry. The results show that the EDA terms can be interpreted in a chemically meaningful way, thus providing a bridge between quantum chemical calculations and heuristic bonding models of traditional chemistry. © 2011 John Wiley & Sons, Ltd. This article is categorized under: Structure and Mechanism > Molecular Structures
In the third step, Ψ 0 is relaxed to yield the final state Ψ AB of the molecule A-B with the energy E AB . The associated energy lowering comes from the orbital mixing and thus, it can be identified as covalent contribution to the chemical bond. It is termed orbital interaction ΔE orb (Eq. (7)):ΔE elstat , ΔE Pauli and ΔE orb sum up to the total interaction energy ΔE int (Eq. (8)):
The cyclic alkyl(amino) carbene (cAAC:)-stabilized acyclic germylones (Me2-cAAC:)2Ge (1) and (Cy2-cAAC:)2Ge (2) were prepared utilizing a one-pot synthesis of GeCl2(dioxane), cAAC:, and KC8 in a 1:2:2.1 molar ratio. Dark green crystals of compounds 1 and 2 were produced in 75 and 70% yields, respectively. The reported methods for the preparation of the corresponding silicon compounds turned out to be not applicable in the case of germanium. The single-crystal X-ray structures of 1 and 2 feature the C-Ge-C bent backbone, which possesses a three-center two-electron π-bond system. Compounds 1 and 2 are the first acyclic germylones containing each one germanium atom and two cAAC: molecules. EPR measurements on compounds 1 and 2 confirmed the singlet spin ground state. DFT calculations on 1/2 revealed that the singlet ground state is more stable by ~16 to 18 kcal mol(-1) than that of the triplet state. First and second proton affinity values were theoretically calculated to be of 265.8 (1)/267.1 (2) and 180.4 (1)/183.8 (2) kcal mol(-1), respectively. Further calculations, which were performed at different levels suggest a singlet diradicaloid character of 1 and 2. The TD-DFT calculations exhibit an absorption band at ~655 nm in n-hexane solution that originates from the diradicaloid character of germylones 1 and 2.
Carbon phosphides, C P , may have highly promising electronic, optical, and mechanical properties, but they are experimentally almost unexplored materials. Phosphaheteroallenes stabilized by N-heterocyclic carbenes undergo a one-electron reduction to yield compounds of the type (L) C P with diverse structures. The use of imidazolylidenes as ligands L give complexes with a central four-membered ring C P , while more electrophilic cyclic diamidocarbenes (DAC) give a compound with an acyclic π-conjugated CP-PC unit. Cyclic C P compounds are best described as non-Kekulé molecules that are stabilized by coordination to the NHC ligands NHC→(C P )←NHC. These species can be easily oxidized to give stable radical cations [(NHC) C P ] . The remarkably stable molecules with an acylic C P core are best described with electron-sharing bonds (DAC)=C=P-P=C=(DAC).
A summary of theoretical and experimental work in the area of low-coordinated compounds of boron and group-14 atoms C-Sn in the last decade is presented. The focus of the account lies on molecules EL2, E2L2 and E3L3, which possess dative bonds between one, two or three atoms E and σ-donor ligands L that stabilize the atoms E through L→E donor-acceptor interactions. The interplay between theory and experiment provides detailed insight into the bonding situation of the molecules, which serves as guideline for the synthesis of molecules that possess unusual bonding motifs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.