A digital twin is a virtual representation of a physical object or process capable of collecting information from the real environment to represent, validate and simulate the physical twin’s present and future behavior. It is a key enabler of data-driven decision making, complex systems monitoring, product validation and simulation and object lifecycle management. As an emergent technology, its widespread implementation is increasing in several domains such as industrial, automotive, medicine, smart cities, etc. The objective of this systematic literature review is to present a comprehensive view on the DT technology and its implementation challenges and limits in the most relevant domains and applications in engineering and beyond.
Real-time pattern and activity recognition techniques have experienced a recent surge in the use of advanced statistical techniques for analyzing data. More explicitly, Machine Learning classification methods have been used in a variety of applications and for different purposes, such as recognizing different types of events from accelerometer data (e.g. in smart watches, wearables, and vibration analysis). The objective of this work is to present a novel use of accelerometer-based pattern recognition techniques to detect the urban space infrastructure characteristics based on their effect on a vehicle’s body frame dynamics. For this study, we focus on detecting speed bumps, potholes and curves based on a real-time data streaming with the objective of rendering a street digitalization to automatically update an urban space Digital Twin. The present study has achieved real-time event detection for an urban trajectory with high accuracy which yields data that can be later fused with other sensors data. This approach is effectively contributing to the infrastructure layer of a multi-layered approach of digital modelling. Furthermore, the results contribute to expand the body of knowledge of real-time accelerometer event recognition techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.