We consider the use of medial surfaces to represent symmetries of 3-D objects. This allows for a qualitative abstraction based on a directed acyclic graph of components and also a degree of invariance to a variety of transformations including the articulation of parts. We demonstrate the use of this representation for 3-D object model retrieval. Our formulation uses the geometric information A preliminary version of this article was published in EMMCVPR 2005. In this extended version we have included results on the significantly larger McGill Shape Benchmark, making a stronger case for the advantages of our method for models with articulating parts. We have also included expanded introduction, medial surface computation, matching, indexing, experimental results, and discussion sections, along with several new figures. associated with each node along with an eigenvalue labeling of the adjacency matrix of the subgraph rooted at that node. We present comparative retrieval results against the techniques of shape distributions (Osada et al.) and harmonic spheres (Kazhdan et al.) on 425 models from the McGill Shape Benchmark, representing 19 object classes. For objects with articulating parts, the precision vs recall curves using our method are consistently above and to the right of those of the other two techniques, demonstrating superior retrieval performance. For objects that are rigid, our method gives results that compare favorably with these methods.
Abstract-Hierarchical image structures are abundant in computer vision and have been used to encode part structure, scale spaces, and a variety of multiresolution features. In this paper, we describe a framework for indexing such representations that embeds the topological structure of a directed acyclic graph (DAG) into a low-dimensional vector space. Based on a novel spectral characterization of a DAG, this topological signature allows us to efficiently retrieve a promising set of candidates from a database of models using a simple nearest-neighbor search. We establish the insensitivity of the signature to minor perturbation of graph structure due to noise, occlusion, or node split/merge. To accommodate large-scale occlusion, the DAG rooted at each nonleaf node of the query "votes" for model objects that share that "part," effectively accumulating local evidence in a model DAG's topological subspaces. We demonstrate the approach with a series of indexing experiments in the domain of view-based 3D object recognition using shock graphs.
We consider the use of medial surfaces to represent symmetries of 3-D objects. This allows for a qualitative abstraction based on a directed acyclic graph of components and also a degree of invariance to a variety of transformations including the articulation of parts. We demonstrate the use of this representation for 3-D object model retrieval. Our formulation uses the geometric information A preliminary version of this article was published in EMMCVPR 2005. In this extended version we have included results on the significantly larger McGill Shape Benchmark, making a stronger case for the advantages of our method for models with articulating parts. We have also included expanded introduction, medial surface computation, matching, indexing, experimental results, and discussion sections, along with several new figures. associated with each node along with an eigenvalue labeling of the adjacency matrix of the subgraph rooted at that node. We present comparative retrieval results against the techniques of shape distributions (Osada et al.) and harmonic spheres (Kazhdan et al.) on 425 models from the McGill Shape Benchmark, representing 19 object classes. For objects with articulating parts, the precision vs recall curves using our method are consistently above and to the right of those of the other two techniques, demonstrating superior retrieval performance. For objects that are rigid, our method gives results that compare favorably with these methods.
The shock graph is an emerging shape representation for object recognition, in which a 2-D silhouette is decomposed into a set of qualitative parts, captured in a directed acyclic graph. Although a number of approaches have been proposed for shock graph matching, these approaches do not address the equally important indexing problem. We extend our previous work in both shock graph matching and hierarchical structure indexing to propose the first unified framework for view-based 3-D object recognition using shock graphs. The heart of the framework is an improved spectral characterization of shock graph structure that not only drives a powerful indexing mechanism (to retrieve similar candidates from a large database), but also drives a matching algorithm that can accommodate noise and occlusion. We describe the components of our system and evaluate its performance using both unoccluded and occluded queries. The large set of recognition trials (over 25,000) from a large database (over 1400 views) represents one of the most ambitious shock graph-based recognition experiments conducted to date.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2025 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.