Due to its huge impact on the overall quality of service (QoS) of wireless networks, both academic and industrial research have actively focused on analyzing the received signal strength in areas of particular interest. In this paper, we propose the improvement of signal-strength aggregation with a special focus on Mobile Crowdsourcing scenarios by avoiding common issues related to the mishandling of log-scaled signal values, and by the proposal of a novel aggregation method based on interpolation. Our paper presents two clear contributions. First, we discuss the misuse of log-scaled signal-strength values, which is a persistent problem within the mobile computing community. We present the physical and mathematical formalities on how signal-strength values must be handled in a scientific environment. Second, we present a solution to the difficulties of aggregating signal strength in Mobile Crowdsourcing scenarios, as a low number of measurements and nonuniformity in spatial distribution. Our proposed method obtained consistently lower Root Mean Squared Error (RMSE) values than other commonly used methods at estimating the expected value of signal strength over an area. Both contributions of this paper are important for several recent pieces of research that characterize signal strength for an area of interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.