Cellular homoeostatic pathways such as macroautophagy (hereinafter autophagy) are regulated by basic mechanisms that are conserved throughout the eukaryotic kingdom. However, it remains poorly understood how these mechanisms further evolved in higher organisms. Here we describe a modification in the autophagy pathway in vertebrates, which promotes its activity in response to oxidative stress. We have identified two oxidation-sensitive cysteine residues in a prototypic autophagy receptor SQSTM1/p62, which allow activation of pro-survival autophagy in stress conditions. The Drosophila p62 homologue, Ref(2)P, lacks these oxidation-sensitive cysteine residues and their introduction into the protein increases protein turnover and stress resistance of flies, whereas perturbation of p62 oxidation in humans may result in age-related pathology. We propose that the redox-sensitivity of p62 may have evolved in vertebrates as a mechanism that allows activation of autophagy in response to oxidative stress to maintain cellular homoeostasis and increase cell survival.
SQSTM1/p62 (sequestosome 1) selectively targets polyubiquitinated proteins for degradation via macroautophagy and the proteasome. Additionally, SQSTM1 shuttles between the cytoplasmic and nuclear compartments, although its role in the nucleus is relatively unknown. Here, we report that SQSTM1 dynamically associates with DNA damage foci (DDF) and regulates DNA repair. Upon induction of DNA damage SQSTM1 interacts with FLNA (filamin A), which has previously been shown to recruit DNA repair protein RAD51 (RAD51 recombinase) to double-strand breaks and facilitate homologous recombination (HR). SQSTM1 promotes proteasomal degradation of FLNA and RAD51 within the nucleus, resulting in reduced levels of nuclear RAD51 and slower DNA repair. SQSTM1 regulates the ratio between HR and nonhomologous end joining (NHEJ) by promoting the latter at the expense of the former. This SQSTM1-dependent mechanism mediates the effect of macroautophagy on DNA repair. Moreover, nuclear localization of SQSTM1 and its association with DDF increase with aging and are prevented by life-span-extending dietary restriction, suggesting that an imbalance in the mechanism identified here may contribute to aging and age-related diseases.
This study unravels a new link between MAO-dependent H2O2 production and lysosomal dysfunction. Altogether, our findings demonstrate that the MAO-A/H2O2 axis has a negative impact on the elimination and recycling of mitochondria through the autophagy-lysosome pathway, which participates in cardiomyocyte death and HF. Antioxid. Redox Signal. 25, 10-27.
Mitochondria are essential for cellular and organismal health, such that mitochondrial dysfunction can contribute to ageing and age-related diseases. In particular, impairment of mitochondrial function has been shown to be an underlying cause of several human neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. In this chapter, we outline the current understanding of various mechanisms of mitochondrial quality control with a specifi c focus on mitophagy, the process of mitochondrial degradation via the autophagy pathway. We describe the autophagy and mitophagy pathways and highlight the key molecular players controlling these processes. Additionally, we discuss how mutations in the components of the molecular machinery controlling mitophagy can lead to the loss of neuronal function and viability and eventually result in disease. Studies of these pathways not only produce an important insight into the mechanisms of neurodegenerative diseases but also suggest molecular components of mitochondrial quality control which could be used as targets for therapeutic interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.