Senescence is a highly regulated process, eventually leading to cell and tissue disintegration: a physiological process associated with nutrient (e.g. nitrogen) redistribution from leaves to reproductive organs. Senescence is not observed in young leaves, indicating that repressors efficiently act to suppress cell degradation during early leaf development and/or that senescence activators are switched on when a leaf ages. Thus, massive regulatory network re‐wiring likely constitutes an important component of the pre‐senescence process. Transcription factors (TFs) have been shown to be central elements of such regulatory networks. Here, we used quantitative real‐time polymerase chain reaction (qRT‐PCR) analysis to study the expression of 1880 TF genes during pre‐senescence and early‐senescence stages of leaf development, using Arabidopsis thaliana as a model. We show that the expression of 185 TF genes changes when leaves develop from half to fully expanded leaves and finally enter partial senescence. Our analysis identified 41 TF genes that were gradually up‐regulated as leaves progressed through these developmental stages. We also identified 144 TF genes that were down‐regulated during senescence. A considerable number of the senescence‐regulated TF genes were found to respond to abiotic stress, and salt stress appeared to be the major factor controlling their expression. Our data indicate a peculiar fine‐tuning of developmental shifts during late‐leaf development that is controlled by TFs.
BackgroundSecond generation (2G) ethanol is produced by breaking down lignocellulosic biomass into fermentable sugars. In Brazil, sugarcane bagasse has been proposed as the lignocellulosic residue for this biofuel production. The enzymatic cocktails for the degradation of biomass-derived polysaccharides are mostly produced by fungi, such as Aspergillus niger and Trichoderma reesei. However, it is not yet fully understood how these microorganisms degrade plant biomass. In order to identify transcriptomic changes during steam-exploded bagasse (SEB) breakdown, we conducted a RNA-seq comparative transcriptome profiling of both fungi growing on SEB as carbon source.ResultsParticular attention was focused on CAZymes, sugar transporters, transcription factors (TFs) and other proteins related to lignocellulose degradation. Although genes coding for the main enzymes involved in biomass deconstruction were expressed by both fungal strains since the beginning of the growth in SEB, significant differences were found in their expression profiles. The expression of these enzymes is mainly regulated at the transcription level, and A. niger and T. reesei also showed differences in TFs content and in their expression. Several sugar transporters that were induced in both fungal strains could be new players on biomass degradation besides their role in sugar uptake. Interestingly, our findings revealed that in both strains several genes that code for proteins of unknown function and pro-oxidant, antioxidant, and detoxification enzymes were induced during growth in SEB as carbon source, but their specific roles on lignocellulose degradation remain to be elucidated.ConclusionsThis is the first report of a time-course experiment monitoring the degradation of pretreated bagasse by two important fungi using the RNA-seq technology. It was possible to identify a set of genes that might be applied in several biotechnology fields. The data suggest that these two microorganisms employ different strategies for biomass breakdown. This knowledge can be exploited for the rational design of enzymatic cocktails and 2G ethanol production improvement.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-017-3857-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.