In a previous work based on popular belief, Campomanesia xanthocarpa Berg., popularly known as “guavirova”, showed to have a potential effect in the control of a number of conditions associated with cardiovascular diseases. The aim of the present work was to investigate the effects of C. xanthocarpa extract (CXE) on antiplatelet, antithrombotic and fibrinolytic activities in mice and in human blood. Mice were treated orally for 5 days with CXE or acetylsalicylic acid and at the end of the treatment period animals were challenged for bleeding, acute thromboembolism and ulcerogenic activity. In addition, we have assessed the prothrombin time and activated partial thromboplastin time (aPTT) after oral administration. In in vitro assays, antiplatelet effects of CXE was evaluated on platelet aggregation, and fibrinolytic activity of the extract was observed by mice or human artificial blood clot degradation. Platelet citotoxicity of the extract was also determined by the LDH assay. Results demonstrated that CXE has a significant protective effect on thrombosis. It also inhibits platelet aggregation without demonstrating cytotoxicity on platelets. CXE slightly prolonged aPTT and showed no ulcerogenic activity after oral administration. In addition, CXE showed a fibrinolytic activity. Thus, C. xanthocarpa showed antiplatelet, antithrombotic and fibrinolytic activities in mice.
Kidney function in metabolism is often underestimated. Although the word "clearance" is associated to "degradation", at nephron level, proper balance between what is truly degraded and what is redirected to de novo utilization is crucial for the maintenance of electrolytic and acid-basic balance and energy conservation. Insulin is probably one of the best examples of how diverse and heterogeneous kidney response can be. Kidney has a primary role in the degradation of insulin released in the bloodstream, but it is also incredibly susceptible to insulin action throughout the nephron. Fluctuations in insulin levels during fast and fed state add another layer of complexity in the understanding of kidney fine-tuning. This review aims at revisiting renal insulin actions and clearance and to address the association of kidney dysmetabolism with hyperinsulinemia and insulin resistance, both highly prevalent phenomena in modern society.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.