Flowering is a rigorously timed and morphologically complex shift in plant development. This change depends on endogenous as well as environmental factors. FLOWERING LOCUS T (FT) integrates several cues from different pathways acting as a flowering promoter. Contrary to the role of FT, its paralog TERMINAL FLOWER 1 (TFL1) delays floral transition. Although FT/TFL1 homologs have been studied in model eudicots and monocots, scarce studies are available in non-model monocots like the Orchidaceae. Orchids are very diverse and their floral complexity is translated into a unique aesthetic display, which appeals the ornamental plant market. Nonetheless, orchid trade faces huge limitations due to their long vegetative phase and intractable indoor flowering seasons. Little is known about the genetic basis that control reproductive transition in orchids and, consequently, manipulating their flowering time remains a challenge. In order to contribute to the understanding of the genetic bases that control flowering in orchids we present here the first broad-scale analysis of FT/TFL1-like genes in monocots with an expanded sampling in Orchidaceae. We also compare expression patterns in three selected species and propose hypotheses on the putative role of these genes in their reproductive transition. Our findings show that FT-like genes are by far more diversified than TFL1-like genes in monocots with six subclades in the former and only one in the latter. Within MonFT1, the comparative protein sequences of MonFT1A and MonFT1B suggest that they could have recruited functional roles in delaying flowering, a role typically assigned to TFL1-like proteins. On the other hand, MonFT2 proteins have retained their canonical motifs and roles in promoting flowering transition. This is also shown by their increased expression levels from the shoot apical meristem (SAM) and leaves to inflorescence meristems (IM) and floral buds (FBs). Finally, TFL1-like genes are retained as single copy and often times are lost. Their loss could be linked to the parallel recruitment of MonFT1A and MonFT1B homologs in delaying flowering and maintaining indeterminacy of the inflorescence meristem. These hypotheses lay the foundation for future functional validation in emerging model orchid species and comparative analyses in orchids with high horticultural potential in the market.
During the reproductive transition in flowering plants, a vegetative apical meristem (SAM) transforms into an inflorescence meristem (IM) that forms bracts and flowers. In grasses such as rice, a genetic regulatory network (GRN) controlling reproductive transitions has been identified. It includes the integration of promoters and repressors from different gene lineages with active duplication events during angiosperm diversification. With the objective to understand the evolution and expression of flowering GRN in Orchidaceae, we performed comprehensive phylogenetic analyses of all genes from the flowering GRN and analyzed by RT-PCR the expression of targeted homologs in key developmental stages. Our ML results indicate that the FT/TFL1, FD, FLC/FUL, SOC1 and AGL24/SVP gene lineages have been subject to multiple duplications in monocots, as well as in Orchidaceae. Conversely, FLC genes are lost in Orchidaceae, suggesting major changes in the repression of flowering. Our studies also show active expression of many target genes in Elleanthus aurantiacus (Orchidoideae) in the SAM and in IM, indicating important functions in the reproductive transition. We describe how the flowering GRN in orchids has significant variations in copy number and expression patterns when compared to the canonical rice flowering GRN.
Effect of the intensive exploitation and forest fragmentation in the genetic structure of P. oleifolius in the Colombian Central Andes. Genética poblacional de la especie amenazada de pino Podocarpus oleifolius D. Don ex Lamb. en bosques de la cordillera central Andina en Colombia.Effect of the intensive exploitation and forest fragmentation in the genetic structure of P. oleifolius in the Colombian Central Andes.Genética poblacional de la especie amenazada de pino Podocarpus oleifolius D. Don ex Lamb. en bosques de la cordillera central Andina en Colombia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.