Background A classical problem in comparative genomics is to compute the rearrangement distance, that is the minimum number of large-scale rearrangements required to transform a given genome into another given genome. The traditional approaches in this area are family-based, i.e., require the classification of DNA fragments of both genomes into families. Furthermore, the most elementary family-based models, which are able to compute distances in polynomial time, restrict the families to occur at most once in each genome. In contrast, the distance computation in models that allow multifamilies (i.e., families with multiple occurrences) is NP-hard. Very recently, Bohnenkämper et al. (J Comput Biol 28:410–431, 2021) proposed an ILP formulation for computing the genomic distance of genomes with multifamilies, allowing structural rearrangements, represented by the generic double cut and join (DCJ) operation, and content-modifying insertions and deletions of DNA segments. This ILP is very efficient, but must maximize a matching of the genes in each multifamily, in order to prevent the free lunch artifact that would otherwise let empty or almost empty matchings give smaller distances. Results In this paper, we adopt the alternative family-free setting that, instead of family classification, simply uses the pairwise similarities between DNA fragments of both genomes to compute their rearrangement distance. We adapted the ILP mentioned above and developed a model in which pairwise similarities are used to assign weights to both matched and unmatched genes, so that an optimal solution does not necessarily maximize the matching. Our model then results in a natural family-free genomic distance, that takes into consideration all given genes, without prior classification into families, and has a search space composed of matchings of any size. In spite of its bigger search space, our ILP seems to be boosted by a reduction of the number of co-optimal solutions due to the weights. Indeed, it converged faster than the original one by Bohnenkämper et al. for instances with the same number of multiple connections. We can handle not only bacterial genomes, but also fungi and insects, or sets of chromosomes of mammals and plants. In a comparison study of six fruit fly genomes, we obtained accurate results.
BackgroundRearrangements are large-scale mutations in genomes, responsible for complex changes and structural variations. Most rearrangements that modify the organization of a genome can be represented by the double cut and join (DCJ) operation. Given two balanced genomes, i.e., two genomes that have exactly the same number of occurrences of each gene in each genome, we are interested in the problem of computing the rearrangement distance between them, i.e., finding the minimum number of DCJ operations that transform one genome into the other. This problem is known to be NP-hard.ResultsWe propose a linear time approximation algorithm with approximation factor O(k) for the DCJ distance problem, where k is the maximum number of occurrences of any gene in the input genomes. Our algorithm works for linear and circular unichromosomal balanced genomes and uses as an intermediate step an O(k)-approximation for the minimum common string partition problem, which is closely related to the DCJ distance problem.ConclusionsExperiments on simulated data sets show that our approximation algorithm is very competitive both in efficiency and in quality of the solutions.
Recently, we proposed an efficient ILP formulation [Rubert DP, Martinez FV, Braga MDV, Natural family-free genomic distance, Algorithms Mol Biol 16:4, 2021] for exactly computing the rearrangement distance of two genomes in a family-free setting. In such a setting, neither prior classification of genes into families, nor further restrictions on the genomes are imposed. Given two genomes, the mentioned ILP computes an optimal matching of the genes taking into account simultaneously local mutations, given by gene similarities, and large-scale genome rearrangements. Here, we explore the potential of using this ILP for inferring groups of orthologs across several species. More precisely, given a set of genomes, our method first computes all pairwise optimal gene matchings, which are then integrated into gene families in the second step. Our approach is implemented into a pipeline incorporating the pre-computation of gene similarities. It can be downloaded from gitlab.ub.uni-bielefeld.de/gi/FFGC. We obtained promising results with experiments on both simulated and real data.
BackgroundThe genomic similarity is a large-scale measure for comparing two given genomes. In this work we study the (NP-hard) problem of computing the genomic similarity under the DCJ model in a setting that does not assume that the genes of the compared genomes are grouped into gene families. This problem is called family-free DCJ similarity.ResultsWe propose an exact ILP algorithm to solve the family-free DCJ similarity problem, then we show its APX-hardness and present four combinatorial heuristics with computational experiments comparing their results to the ILP.ConclusionsWe show that the family-free DCJ similarity can be computed in reasonable time, although for larger genomes it is necessary to resort to heuristics. This provides a basis for further studies on the applicability and model refinement of family-free whole genome similarity measures.Electronic supplementary materialThe online version of this article (10.1186/s12859-018-2130-5) contains supplementary material, which is available to authorized users.
Background: Computationally inferred ancestral genomes play an important role in many areas of genome research. We present an improved workflow for the reconstruction from highly diverged genomes such as those of plants. Results: Our work relies on an established workflow in the reconstruction of ancestral plants, but improves several steps of this process. Instead of using gene annotations for inferring the genome content of the ancestral sequence, we identify genomic markers through a process called genome segmentation. This enables us to reconstruct the ancestral genome from hundreds of thousands of markers rather than the tens of thousands of annotated genes. We also introduce the concept of local genome rearrangement, through which we refine syntenic blocks before they are used in the reconstruction of contiguous ancestral regions. With the enhanced workflow at hand, we reconstruct the ancestral genome of eudicots, a major sub-clade of flowering plants, using whole genome sequences of five modern plants. Conclusions: Our reconstructed genome is highly detailed, yet its layout agrees well with that reported in Badouin et al. (2017). Using local genome rearrangement, not only the marker-based, but also the gene-based reconstruction of the eudicot ancestor exhibited increased genome content, evidencing the power of this novel concept.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.