Aim Species are responding to climate change by changing their distributions, creating debate about the effectiveness of existing networks of protected areas. As a contribution to this debate, we assess whether regional winter abundances and distribution of the Smew Mergellus albellus, a migratory waterbird species listed on Annex I (EU Birds Directive) that overwinters exclusively in European wetlands, changed during 1990–2011, the role of global warming in driving distributional changes and the effectiveness of the network of Special Protection Areas (SPAs, EU Birds Directive) in the context of climate change. Location Europe. Methods We used site‐specific counts (6,883 sites) from 16 countries covering the entire flyway to estimate annual abundance indices and trends at country, region (north‐eastern, central and south‐western) and flyway scales, inside and outside SPAs. We fitted autoregressive models to assess the effect of winter temperature on the annual abundance indices whilst accounting for autocorrelation. Results The Smew wintering distribution shifted north‐eastwards in Europe in accordance with the predictions of global warming, with increasing numbers in the north‐eastern region and declines in the central region. Trends in wintering numbers were more positive in SPAs on the north‐eastern and south‐western part of the flyway. However, a large proportion of the wintering population remains unprotected in north‐eastern areas outside of the existing SPA network. Main conclusions SPAs accommodated climate‐driven abundance changes in the north‐eastern region of the wintering distribution by supporting increasing numbers of Smew in traditional and newly colonized areas. However, we highlight gaps in the current network, suggesting that urgent policy responses are needed. Given rapid changes in species distributions, we urge regular national and international assessments of the adequacy of the EU Natura 2000 network to ensure coherence in site‐safeguard networks for this and other species.
Aim Many species are showing distribution shifts in response to environmental change. We explored (a) the effects of inter‐annual variation in winter weather conditions on non‐breeding distributional abundance of waterbirds exploiting different habitats (deep‐water, shallow water, farmland) and (b) the long‐term shift in the population centroid of these species and investigate its link to changes in weather conditions. Location Europe. Methods We fitted generalized additive mixed Models to a large‐scale, 24‐year dataset (1990–2013) describing the winter distributional abundance of 25 waterbird species. We calculated the annual and long‐term (3‐year periods) population centroid of each species and used the winter North Atlantic Oscillation (NAO) index to explain the inter‐annual and long‐term shifts in their location. Results (a) Year‐to‐year southwestwards shifts in the population centroids of deep‐ and shallow‐water species were linked to negative NAO values. Shallow‐water species shifted northeastwards associated with positive NAO values and the distance shifted increased with increasing NAO. Deep‐water species shifted northeastwards up to zero NAO indices, but showed no further increase at higher NAO values. (b) Deep‐water species showed long‐term northeastwards shifts in distributional abundance throughout the 1990s and the 2000s. Shallow‐water species, on the other hand, shifted northeastwards during the 1990s and early 2000s, but southwestwards thereafter. There were no significant links between the NAO and year‐to‐year movements or long‐term shifts in farmland species’ population centroid. Main Conclusions We provide evidence for a link between both year‐to‐year and long‐term changes in waterbird winter distributional abundances at large geographical scales to short‐ and long‐term changes in winter weather conditions. We also show that species using shallow water, deep‐water and farmland habitats responded differently, especially at high NAO values. As well as important ecological implications, these findings contribute to the development of future conservation measures for these species under current and future climate change.
Abstract. Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge of the effects of global warming on past and future changes in climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere. Based on the summaries of the recent knowledge gained in palaeo-, historical, and future regional climate research, we find that the main conclusions from earlier assessments still remain valid. However, new long-term, homogenous observational records, for example, for Scandinavian glacier inventories, sea-level-driven saltwater inflows, so-called Major Baltic Inflows, and phytoplankton species distribution, and new scenario simulations with improved models, for example, for glaciers, lake ice, and marine food web, have become available. In many cases, uncertainties can now be better estimated than before because more models were included in the ensembles, especially for the Baltic Sea. With the help of coupled models, feedbacks between several components of the Earth system have been studied, and multiple driver studies were performed, e.g. projections of the food web that include fisheries, eutrophication, and climate change. New datasets and projections have led to a revised understanding of changes in some variables such as salinity. Furthermore, it has become evident that natural variability, in particular for the ocean on multidecadal timescales, is greater than previously estimated, challenging our ability to detect observed and projected changes in climate. In this context, the first palaeoclimate simulations regionalised for the Baltic Sea region are instructive. Hence, estimated uncertainties for the projections of many variables increased. In addition to the well-known influence of the North Atlantic Oscillation, it was found that also other low-frequency modes of internal variability, such as the Atlantic Multidecadal Variability, have profound effects on the climate of the Baltic Sea region. Challenges were also identified, such as the systematic discrepancy between future cloudiness trends in global and regional models and the difficulty of confidently attributing large observed changes in marine ecosystems to climate change. Finally, we compare our results with other coastal sea assessments, such as the North Sea Region Climate Change Assessment (NOSCCA), and find that the effects of climate change on the Baltic Sea differ from those on the North Sea, since Baltic Sea oceanography and ecosystems are very different from other coastal seas such as the North Sea. While the North Sea dynamics are dominated by tides, the Baltic Sea is characterised by brackish water, a perennial vertical stratification in the southern subbasins, and a seasonal sea ice cover in the northern subbasins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.